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Outline
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• Introduction: simulating jet dynamics and emission 

• Jets in blackbody-dominated gamma-ray bursts 

• Jets from tidal disruption events 

• Conclusions
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Hydrodynamic simulation: an indispensable tool
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• events taking place in jets extraordinarily dynamic and 
complex 

• jet physics: interplay of processes on a large range of 
length and time scales 

• (magneto)hydrodynamical viewpoint accurate enough 
• jets modelled as fluids: relativistic generalisation of Euler 

equations appropriate 
• most commonly used systems of equations: 

• relativistic hydrodynamics (RHD) 
• relativistic magnetohydrodynamics (RMHD) 
• general relativistic hydrodynamics (GRHD) 
• general relativistic magnetohydrodynamics (GRMHD) 
• resistive relativistic magnetohydrodynamics (RRMHD) 
• … 

• advances in numerical techniques and supporting hardware and 
software make it possible to simultaneously perform *HD 
simulations and compute corresponding synthetic images, spectra 
and light curves and compare to observations
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Simulating Relativistic Jets
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1. relativistic (magneto) hydrodynamics 
simulation 

•finite-volumes 

•method of lines 

•shock-capturing 

•approximate Riemann solver

2. non-thermal particle evolution and 
emission 

•phenomenological shock acceleration 

•radiative and adiabatic loses 

•semi-analytic electron-kinetic eq. solver 

•spatial advection

3. radiative transfer 
•time-dependent emission and absorption 

•relativistic effects (beaming, Doppler) 

•light-travel times 

•synchrotron, inverse-Compton scattering
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1. Hydrodynamic Simulations
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MRGENESIS (Aloy et al. ‘99 ApJS , Leismann et al. 

’05, A&A, Mimica et al. ‘07, ‘09 A&A) 
!

• finite volume approach 

• method of lines: separate semi-discretization 
of space and time 

• time advance: TVD Runge-Kutta methods of 
2nd and 3rd order 

• high-resolution shock-capturing scheme 

• inter-cell reconstruction: PPM 

• numerical fluxes: Marquina, HLLE, HLLC 

• RMHD: constraint transport to conserve ∇B 

• orthogonal coordinate systems: Cartesian, 
cylindrical, spherical 

• MPI + OpenMP: scales up to 10K cores 

• HDF5 library for parallel I/O

Our scheme is compatible with other codes: Ratpenat (M. Perucho), Aenus (M. Obergaulinger)
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2. Non-thermal Particles
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S
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Mimica et al. 2009

van Eerten et al. 2011

• underlying jet fluid (“thermal plasma”) not directly observable 
from Earth 

• population of high-energy non-thermal particles in the jet 
responsible for observed emission

τ≪1 τ≳1

local

• X & γ-ray afterglows 
• blazars emission

• stationary radio emission

transport
• opt. & UV afterglows 
• X-ray TDE jets

• radio jets 
• late-time radio afterglows

Non-Thermal Particle Algorithms Classiication
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3. Radiative Transfer
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• for a fixed observer time T, need to process 
the whole spacetime evolution to compute 
a single virtual image 

• tightly coupled, highly non-local problem 

• 5D problem: 

• virtual detector image (x, y) 

• observation time T 

• observation frequency ν 

• contributions along the line of sight s

dIν

ds
= jν + ανIν

radiation transfer equation:

emitting volume

t1

t2

t3

virtual detector!

(observer)

motion (v~c)!

towards observer

T1T2T3

s

s0

for a fixed T, equation gives an isochrone (s, t) along 
each line of sights = c(t− T ) + s0

Iν jν αν

s

T t

: intensity : emission, absorption

: observer time : jet evolution time

: path towards the detector

synchrotron, 
inverse-Compton

synchrotron 
self-absorption
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SPectral EVolution Code
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S. Tabik et al. Computer Physics Communications 183 (2012) 1937

• SPEV (Mimica et al., Astrophysical J. 696 (2009) 1142) : 
• non-thermal electron transport and evolution equations 

• time- and frequency-dependent radiative transfer in a dynamically changing background 

• parallelization: OpenMP (needs lot of shared memory)

Mimica et al., Astrophysical J. 696 (2009) 1142
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SPectral EVolution Code
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S. Tabik et al. Computer Physics Communications 183 (2012) 1937

• SPEV (Mimica et al., Astrophysical J. 696 (2009) 1142) : 
• non-thermal electron transport and evolution equations 

• time- and frequency-dependent radiative transfer in a dynamically changing background 

• parallelization: OpenMP (needs lot of shared memory)

Mimica et al., Astrophysical J. 696 (2009) 1142

Aloy, C. 2013  
(master’s thesis in 
computer science)
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Jet Simulations Building Blocks
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RMHD
(GRBs, blazars)

Riemann solver
(blazar, GRB internal shocks)

2D transport
(radio maps, off-axis light curves)

1D transport
(blazar/GRB internal shocks, on-

axis GRB blast wave)

Synchrotron + EC
(radio maps, blazar X light curves, GRB 

afterglows, TDE radio transients)

Syn. + EC + SSC
(blazar radio-to-γ-ray light curves and 

spectra)

RHD
(AGN jets, TDE jets)

RRMHD
(non-ideal dissipative 
processes in blazars)

3D transport
(?)

additional
(blazar leptonic-hadronic 

models?)

easy difficult very difficult

treatment of hydrodynamic evolution

treatment of non-thermal particles

treatment of radiative processes
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GRB 101225A - Observations

Why study it? 

• γ-ray emission exceptionally long-
lived  (T90 ~ 7.000 s, Levan+ ’14). 

• no classical afterglow: the X-ray and 
UVOIR emission following the GRB is 
best fitted with BB (+ PL). 

• member of new (sub-)class of 
GRBs?? 

    Black-body dominated GRBs (BBD-
GRBs): 

• BB component in optical/X-ray 
spectrum (GRB 090618, Page+ 
2011; GRB 060218 Campana+ 
2006) 

• classical afterglow suppressed
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10–4

10–5

10–6

10–7

10–8

10–9

10–10

10–5

10–6

10–7

10–8

0.1 1.0 10 100

Time since burst (days)

Fl
ux

 d
en

si
ty

 (J
y)

 
Fl

ux
 d

en
si

ty
 (J

y)
 

W2 (1,928 Å)

M2 (2,246 Å)

W1 (2,600 Å)

U (3,465 Å)

B (4,390 Å)

g (4,815 Å)

r (6,400 Å)

i (7,700 Å)

z (9,050 Å)

a

b

c

Black body + supernova

Black body

Supernova

cXRT

OSIRIS/GTC

UVOIR

(Thöne et al. 2011)
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GRB 101225A - Progenitor System

• Thöne et al., 2011: progenitor system is a He-star / NS merger. (Fryer&Woosley, ’98, 
Zhang & Fryer ’01; Barkov & Komissarov ’10, ‘11)  

• model properties: 

• long-duration central engine 

• structured, high-density circumburst environment 

• tidally ejected hydrogen shell (CE-shell): located at ~ 1014 cm, non-uniform

Plane perpendicular to the orbital motion 

(Taam & Ricker 2010, 2012)
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Jet and Shell Model
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!

• redshift z = 0.847 (Levan et al. 2013) 

• we perform a number of simulations covering a range of parameters 

  JET: 

• Isotropic energy of the jet, Eiso = 4x1053 erg  

• Opening angle: θj
 = 14º,17º 

• True jet energy, Ejet ~ 1051 - 1052 erg 

• Injection radius, R0 = 3x1013 cm 

• Γi = 80, Γinf = 400, T1 = 1100s, T2 = 3800s 

  SHELL: 

• Toroidal-like shape. 

• Common-enevelope (CE) shell, Msh = 0.14, 0.26 Msun  

• Internal/external radius of the shell, RCE,in = 4.5x1013 cm, RCE,out  = 1.05x1014 cm 

• Internal/external opening angle of the funnel, θf,in = 1º, θf,in = 30º 

• Medium density, ρext = 8x10-14 g cm-3, ρsh / ρext = 1500 (if Msh = 0.26 Msun) 

!

Density of the jet,  

ρj ∝ Eiso Tinj
-1 Γi

-1 Γinf
-1

 R0
-2

In agreement with simulations by 
Ricker & Taam (2012)
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Hydrodynamic Evolution
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5 min. 2 hours

10 hours 2 days

Reference model parameters:

Density

EISO = 4× 1053 erg θj = 17◦ ρCE/ρext = 1500

Rinj = 3× 1013 cm RCE,in = 4.5× 1013 cm RCE,out = 1.05× 1014 cm

θf,in = 1◦ θf,out = 30◦ ρext = 8× 10−14 g cm−3

• jet injected with constant luminosity up to 1100 s 
• luminosity decreasing as t-5/3 until 3800 s 
• jet hits inner shell boundary after ~ minutes 
•2 shocks form (not typical GRB afterglow shocks): 

•propagate from funnel walls towards jet axis 
•heate jet fluid to few x 106 K 
•penetrate CE shell and propagate sideways 

• jet-shell interaction decelerates jet to subrel. vel. 
• long-term: cavity in CE and ext. medium blown, 
containing 1 - 2 Msun
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Parametric Scan
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(Thöne et al. 2011)
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Thermal and Non-thermal Emissivity and Absorption
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+  Synchrotron (non-thermal particles): particles accelerated at shocks  

!

!

• using the radiative transport code SPEV (Mimica et al. 2009) we compute synthetic LCs & 
Spectra and compare the synthetic emission from our model with observations 

• Thermal-Bremsstrahlung model 

1. Emission: thermal-bremsstrahlung (free-free).  

!

!

2. Absorption: following Kramers law. 

!

!

3. Maxwellian temperature averaged (free-free) Gaunt factor, gff(ν,T) (Sutherland 1998) 

   4. Temperature? P(T) = Pe + Prad (1 - e-τ)  

¯

Iterative process 
becausey τ = τ(T, ν) =

As τ depends

(1) τ <<1: P = Pe              Pe   = kρT/µmp 

(2) τ >>1: P = Pe + Prad,   Prad = aRT4 /3

Bν (T, ν) = jν / αν
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Studying Thermal Emission
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• Temporal evolution up to 5 
days  

• Optical band: detections up 
to ~2 days (except r/i bands) 

• We neglect the external 
medium emission

Ù
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  (1) emission   (2) absorption Intensity

tobs = T - z/c             

T: hydro. time 
(measured in the 
source rest frame)

Detector

(Line of sight, θobs = 0º)

W2 band: 1.56 x 1015 Hz

Time obs.:  0.17d

Jet/shell interaction region
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Origin of Thermal Emission
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• in optical: system optically thick until ~ 1 day 
•spectral inversion at thick -> thin transition 

• in X-rays: system optically thin 
•origin of early-time thermal emission: 

• jet/CE-shell interaction region 
•X-rays emitted from closer to the CE shell than 
optical

emitting region
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Evolution of Thermal Emission
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•CE-shell: almost intact at 0.17 days, almost 
completely ablated at 0.6 days 

•most thermal radiation emitted before 2 days 
•minor, but long-lasting contribution from the bubble
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Importance of CE-Shell Mass
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•RM - reference model 
•G0, M2 - low density ext. medium 
•S1, S2 - stratified ext. medium 

•D2 - lower-mass CE-shell (0.5x) 
•D3 - higher-mass CE-shell (10x)

•CE-shell mass much more important than ext. medium properties 
•masses much lower(higher) than 0.26 M⊙ cause light curve to peak 

and spectral inversion to happen too early(late) 
•lower density external medium suppresses late-time flattening
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Evolution of the  non-thermal 
particles

• Injection of lagrangian particles 

• Forward shock 

• Params.: ϵe, ζe , ϵB, p, aacc, γmin,min 

• Stochastic magn. field:              

B’st ∝ (ϵB us)1/2

20

Synchrotron Emission

Cuesta-Martínez et al. 2014 arXiv:1408.1814
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Origin of Non-Thermal Emission

NT 

emissivity

NT 

intensity

T+NT 

intensity

t=0.17 days
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GRB 101225A Summary
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•possible progenitor: NS + He core merger (Thöne et al. 2011) 
•we model: jet propagation through secondary star outer layers 

and external medium: 
• phase 1: jet free expansion until hitting CE-shell 

• phase 2: jet (wider than the funnel) impacts against much denser CE-shell and heats 

and baryon-loads, ablating and disrupting the CE-shell in the process 

• phase 3: heated and baryon-loaded jet inflates a cavity, entering self-similar regime 

•origin of thermal emission:  
• UVOIR observations can be explained as radiation from CE-shell/jet interaction region 

(~ 5x1013 c, much smaller than the surface of the expanding bubble ~ 1015 cm) 

• properties weakly dependent on external medium profile 

• X-rays: depend on the CE-shell funnel geometry => initially narrower and denser 

funnel would improve agreement with observations (increase of computational cost) 

•non-thermal emission: 
• moderately relativistic forward shock dominates early evolution, emission 

compensates thermal deficit for t < 0.2 days 

• no classical afterglow signature due to quick deceleration 

•submitted papers: arXiv:1408.1305, arXiv:1408.1814
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Afterglow Model for Swift J1644+57

23

• Swift J164449.31+573451 (z = 0.354), initially GRB110328A 

• longevity of its afterglow points to a different explanation: a 

blazar-like jet fed by a tidal disruption of a solar-mass star

Zauderer et al. 2011
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Afterglow Model for Swift J1644+57
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• Swift J164449.31+573451 (z = 0.354), initially GRB110328A 

• longevity of its afterglow points to a different explanation: a 

blazar-like jet fed by a tidal disruption of a solar-mass star

Zauderer et al. 2011
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Metzger, Giannios & Mimica 2012
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Long-term Evolution and Motivation for Simulations

24
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•source unexpectedly brightens a few months after initial peak 

•in contrast to predictions of a 1D blast wave model 

•possibilities: 
•slower material ejected after fast jet, but containing 20x the energy (Berger et al. 2012) 

•complex environment: stellar debris and circumnuclear medium (de Colle et al. 2012) 

•abrupt change in CNM density profile (unlikely in GRB case; Mimica & Giannios 2011; 

Gat et al. 2013)  

•forward-shock accelerated electrons cooled by X-rays (Kumar et al. 2013) 

•jet has a complex angular structure (Tchekhovskoy et al. 2014;, Wang et al. 2014) 

•our work: 1D- and 2D simulations exploring different possibilities
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Example: 1D RHD Simulations
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On-axis 1D Simulation Light Curves
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•1D simulation parameter scan: 
•fixed Lj/n18, tj, θj, Γj 
•variable n18, εe, εB, ζe 

•single-component jet models cannot explain early- 
and late-time observations simultaneously 

•fast, narrow jet: early times 
•slow, wide jet: late times 

•X-ray cooling does not produce sufficient radio-
emission early-time deficit

fast, narrow jet

slow, wide jet

X-ray Compton cooled!
fast, narrow jet
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1D Two-component Jets: Light Curves
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•two-component jet: 
•fast core Γf=10, θf=0.1 rad 
•slow sheath Γs=2, θs=0.5 rad 

•strong dependence on εB, εE
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1D Two-Component Jet: On-axis Radio Maps
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1D Two-Component Jet: Of-axis Radio Maps
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1D Two-Component Jet: Of-axis Radio Maps
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1D Two-Component Jet: Of-axis Radio Maps

29



Petar Mimica Simulations of jet emission and dynamics Lyon, October 1st 2014

2D Simulations (preliminary)
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2D Simulations (preliminary)
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• we simulate jet dynamics and emission using an iterative 

process: 
• jets simulated using 1D and 2D RHD simulations 
• non-thermal and thermal emission computed by post-processing a large 

number (~103) simulation snapshots 
• emission, absorption, intensity analysed in observer frame 

•GRB 101225A: 
• modelled as jet interacting with progenitor outer layers and interstellar medium 
• secondary star ejects CE-shell which disrupts the jet (no classical afterglow) 
• thermal emission predominantly emitted from jet/CE-shell interaction region 
• non-thermal emission comes from the bubble forward shock 

•Swift J1644+53 (in progress): 
• modelled as TDE-powered jet interacting with circumnuclear medium 
• unexpected late-time increase in radio emission 
• single-component jet models: probably excluded 
• early-time X-ray cooling: probably excluded 
• external medium structure: probably excluded 
• most promising model: two-component jet


