Numerical simulations of relativistic jets emission and dynamics

Petar Mimica 1, @

1: Department of Astronomy and Astrophysics, University of Valencia (UV-DAA) - Website

C/Dr. Moliner 50 46100 Burjassot (Valencia) - Spain

:

:

:

In the recent decades simulations have become an indispensable tool for modeling and understanding many of the jet aspects. After introducing modern numerical methods used to perform relativistic jet simulations, I give an overview of selected topics where numerically computing an observational signature of a relativistic jet simulation is very important.

Subject : Topics Topics oral Astrophysics

Numerical simulations

Numerical simulations of relativistic jet emission and dynamics

Petar Mimica

Department of Astronomy and Astrophysics

University of Valencia

in collaboration with:

Miguel-Ángel Aloy (Valencia)

Carlos Cuesta-Martínez (Valencia)

Dimitrios Giannios (Purdue)

Brian Metzger (Columbia)

Outline

- Introduction: simulating jet dynamics and <u>emission</u>
- Jets in blackbody-dominated gamma-ray bursts
- Jets from tidal disruption events
- Conclusions

Hydrodynamic simulation: an indispensable tool

- events taking place in jets extraordinarily dynamic and complex
- jet physics: interplay of processes on a large range of length and time scales
- (magneto)hydrodynamical viewpoint accurate enough
- jets modelled as fluids: relativistic generalisation of Euler equations appropriate
- most commonly used systems of equations:
 - relativistic hydrodynamics (RHD)
 - relativistic magnetohydrodynamics (RMHD)
 - general relativistic hydrodynamics (GRHD)
 - general relativistic magnetohydrodynamics (GRMHD)
 - resistive relativistic magnetohydrodynamics (RRMHD)
- advances in numerical techniques and supporting hardware and software make it possible to simultaneously perform *HD simulations *and* compute corresponding synthetic images, spectra and light curves *and* compare to observations

Simulating Relativistic Jets

1. relativistic (magneto) hydrodynamics simulation

- •finite-volumes
- •method of lines
- shock-capturing
- •approximate Riemann solver

2. non-thermal particle evolution and emission

- phenomenological shock acceleration
- radiative and adiabatic loses
- •semi-analytic electron-kinetic eq. solver
- spatial advection
- 3. radiative transfer
 - •time-dependent emission and absorption
 - •relativistic effects (beaming, Doppler)
 - •light-travel times
 - •synchrotron, <u>inverse-Compton scattering</u>

Bonn, July 31st 2014

4

Petar Mimica

Simulations of Blazar Jets

1. Hydrodynamic Simulations

MRGENESIS (Aloy *et al.* '99 ApJS , Leismann *et al.* '05, A&A, Mimica *et al.* '07, '09 A&A)

- finite volume approach
- method of lines: separate semi-discretization of space and time
- time advance: TVD Runge-Kutta methods of 2nd and 3rd order
- high-resolution shock-capturing scheme
- inter-cell reconstruction: PPM
- numerical fluxes: Marquina, HLLE, HLLC
- \bullet RMHD: constraint transport to conserve ∇B
- orthogonal coordinate systems: Cartesian, cylindrical, spherical
- <u>MPI + OpenMP: scales up to 10K cores</u>
- HDF5 library for parallel I/O

Our scheme is compatible with other codes: Ratpenat (M. Perucho), Aenus (M. Obergaulinger)

Petar Mimica

Simulations of Blazar Jets

Bonn, July 31st 2014

1. Hydrodynamic Simulations

MRGENESIS (Aloy *et al.* '99 ApJS , Leismann *et al.* '05, A&A, Mimica *et al.* '07, '09 A&A)

- finite volume approach
- method of lines: separate semi-discretization of space and time
- time advance: TVD Runge-Kutta methods of 2nd and 3rd order
- high-resolution shock-capturing scheme
- inter-cell reconstruction: PPM
- numerical fluxes: Marquina, HLLE, HLLC
- \bullet RMHD: constraint transport to conserve ∇B
- orthogonal coordinate systems: Cartesian, cylindrical, spherical
- <u>MPI + OpenMP: scales up to 10K cores</u>
- HDF5 library for parallel I/O

Our scheme is compatible with other codes: Ratpenat (M. Perucho), Aenus (M. Obergaulinger)

Petar Mimica

Simulations of Blazar Jets

Bonn, July 31st 2014

2. Non-thermal Particles

- underlying jet fluid ("thermal plasma") not directly observable from Earth
- population of high-energy non-thermal particles in the jet responsible for observed emission

Non-Thermal Particle Algorithms Classification

	τ ≪1	τ ≳1	
local	 X & γ-ray afterglows blazars emission 	 stationary radio emission 	
transport	 opt. & UV afterglows X-ray TDE jets	radio jetslate-time radio afterglows	van Eerten <i>et al.</i> 2011

3. Radiative Transfer

radiation transfer equation:

$$\frac{\mathrm{d}I_{\nu}}{\mathrm{d}s} = j_{\nu} + \alpha_{\nu}I_{\nu}$$

 $s = c(t - T) + s_0$

- for a fixed observer time T, need to process the whole spacetime evolution to compute a single virtual image
- tightly coupled, highly non-local problem
- <u>5D problem</u>:
- virtual detector image (x, y)
- observation time **T**
- observation frequency ${\bf v}$
- contributions along the line of sight s

for a fixed *T*, equation gives an isochrone (*s*, *t*) along each line of sight

Petar Mimica Simulations of jet emission and dynamics

Lyon, October 1st 2014

SPectral EVolution Code

- SPEV (Mimica et al., Astrophysical J. 696 (2009) 1142) :
 - non-thermal electron transport and evolution equations
 - time- and frequency-dependent radiative transfer in a dynamically changing background
 - parallelization: OpenMP (needs lot of shared memory)

SPectral EVolution Code

- SPEV (Mimica et al., Astrophysical J. 696 (2009) 1142) :
 - non-thermal electron transport and evolution equations
 - time- and frequency-dependent radiative transfer in a dynamically changing background
 - parallelization: OpenMP (needs lot of shared memory)

SPectral EVolution Code

- SPEV (Mimica et al., Astrophysical J. 696 (2009) 1142) :
 - non-thermal electron transport and evolution equations
 - time- and frequency-dependent radiative transfer in a dynamically changing background
 - parallelization: OpenMP (needs lot of shar

Petar Mimica

Simulations of Blazar Jets

Bonn, July 31st 2014

Jet Simulations Building Blocks

Petar Mimica Simulations of jet emission and dynamics

Lyon, October 1st 2014

GRB 101225A - Observations

Why study it?

- γ-ray emission exceptionally longlived (T₉₀ ~ 7.000 s, Levan+ '14).
- no classical afterglow: the X-ray and UVOIR emission following the GRB is best fitted with BB (+ PL).
- member of new (sub-)class of GRBs??

Black-body dominated GRBs (BBD-GRBs):

- BB component in optical/X-ray spectrum (GRB 090618, Page+ 2011; GRB 060218 Campana+ 2006)
- classical afterglow suppressed

Petar Mimica Simulations of jet emission and dynamics

GRB 101225A - Progenitor System

- Thöne et al., 2011: progenitor system is a He-star / NS merger. (Fryer&Woosley, '98, Zhang & Fryer '01; Barkov & Komissarov '10, '11)
- model properties:
 - long-duration central engine
 - structured, high-density circumburst environment
 - tidally ejected hydrogen shell (CE-shell): located at ~ 10¹⁴ cm, non-uniform

Plane perpendicular to the orbital motion

GRB 101225A - Progenitor System

- **Thöne et al., 2011**: progenitor system is a **He-star / NS merger**. (Fryer&Woosley, '98, Zhang & Fryer '01; Barkov & Komissarov '10, '11)
- model properties:
 - long-duration central engine
 - structured, high-density circumburst environment
 - tidally ejected hydrogen shell (CE-shell): located at ~ 10¹⁴ cm, non-uniform

Plane perpendicular to the orbital motion

GRB 101225A - Progenitor System

- **Thöne et al., 2011**: progenitor system is a **He-star / NS merger**. (Fryer&Woosley, '98, Zhang & Fryer '01; Barkov & Komissarov '10, '11)
- model properties:
 - long-duration central engine
 - structured, high-density circumburst environment
 - tidally ejected hydrogen shell (CE-shell): located at ~ 10¹⁴ cm, non-uniform

Plane perpendicular to the orbital motion

Jet and Shell Model

- redshift z = 0.847 (Levan et al. 2013)
- we perform a number of simulations covering a range of parameters

JET:

- Isotropic energy of the jet, Eiso = 4x10⁵³ erg
- **Opening angle**: *θ*_j = 14°,17°
- True jet energy, $E_{jet} \sim 10^{51} 10^{52}$ erg
- Injection radius, $\mathbf{R}_0 = 3 \times 10^{13}$ cm
- $\Gamma_i = 80$, $\Gamma_{inf} = 400$, $T_1 = 1100s$, $T_2 = 3800s$

SHELL:

- Toroidal-like shape.
- Common-enevelope (CE) shell, $M_{sh} = 0.14$, 0.26 M_{sun} Ricker & Taam (2012)
- Internal/external radius of the shell, $R_{CE,in} = 4.5 \times 10^{13}$ cm, $R_{CE,out} = 1.05 \times 10^{14}$ cm
- Internal/external opening angle of the funnel, $\theta_{f,in} = 1^{\circ}$, $\theta_{f,in} = 30^{\circ}$
- Medium density, $\rho_{ext} = 8 \times 10^{-14} \text{ g cm}^{-3}$, $\rho_{sh} / \rho_{ext} = 1500$ (if M_{sh} = 0.26 M_{sun})

Hydrodynamic Evolution

Reference model parameters:

 $E_{\rm ISO} = 4 \times 10^{53} \text{ erg}$ $\theta_i = 17^{\circ}$ $R_{\rm inj} = 3 \times 10^{13} \text{ cm}$ $R_{\rm CE,in} = 4.5 \times 10^{13} \text{ cm}$ $R_{\rm CE,out} = 1.05 \times 10^{14} \text{ cm}$ $\theta_{\rm f,out} = 30^{\circ}$ $\theta_{\rm f.in} = 1^{\circ}$

 $\rho_{\rm CE}/\rho_{\rm ext} = 1500$ $\rho_{\rm ext} = 8 \times 10^{-14} \text{ g cm}^{-3}$

- jet injected with constant luminosity up to 1100 s
- ² luminosity decreasing as t^{-5/3} until 3800 s
 - jet hits inner shell boundary after ~ minutes
 - 2 shocks form (not typical GRB afterglow shocks):
 - propagate from funnel walls towards jet axis
 - •heate jet fluid to few $\times 10^6$ K
 - •penetrate CE shell and propagate sideways
 - jet-shell interaction decelerates jet to subrel. vel.
 - long-term: cavity in CE and ext. medium blown, containing 1 - 2 M_{sun}

Petar Mimica Simulations of jet emission and dynamics

Lyon, October 1st 2014

Hydrodynamic Evolution

Reference model parameters:

 $E_{\rm ISO} = 4 \times 10^{53} \text{ erg}$ $\theta_i = 17^{\circ}$ $R_{\rm inj} = 3 \times 10^{13} \text{ cm}$ $R_{\rm CE,in} = 4.5 \times 10^{13} \text{ cm}$ $R_{\rm CE,out} = 1.05 \times 10^{14} \text{ cm}$ $\theta_{\rm f,out} = 30^{\circ}$ $\theta_{\rm f.in} = 1^{\circ}$

 $\rho_{\rm CE}/\rho_{\rm ext} = 1500$ $\rho_{\rm ext} = 8 \times 10^{-14} \text{ g cm}^{-3}$

- jet injected with constant luminosity up to 1100 s
- ² luminosity decreasing as t^{-5/3} until 3800 s
 - jet hits inner shell boundary after ~ minutes
 - 2 shocks form (not typical GRB afterglow shocks):
 - propagate from funnel walls towards jet axis
 - •heate jet fluid to few $\times 10^6$ K
 - •penetrate CE shell and propagate sideways
 - jet-shell interaction decelerates jet to subrel. vel.
 - long-term: cavity in CE and ext. medium blown, containing 1 - 2 M_{sun}

Petar Mimica Simulations of jet emission and dynamics

Lyon, October 1st 2014

Parametric Scan

Petar Mimica Simu

Simulations of jet emission and dynamics

Thermal and Non-thermal Emissivity and Absorption

- using the radiative transport code SPEV (Mimica et al. 2009) we compute synthetic LCs & Spectra and compare the synthetic emission from our model with observations
 - Thermal-Bremsstrahlung model
 - 1. Emission: thermal-bremsstrahlung (free-free).

$$j_{\nu} = \frac{1}{4\pi} 6,8 \times 10^{-38} Z^2 \frac{\rho^2}{m_p^2} T^{-1/2} e^{-x} \bar{g}_{\rm ff}(\nu,T) \,\mathrm{erg} \,\mathrm{s}^{-1} \,\mathrm{cm}^{-3} \,\mathrm{Hz}^{-1}. \qquad x = \frac{h\nu}{kT}$$

2. Absorption: following Kramers law.

$$\alpha_{\nu} \simeq 4.1 \times 10^{-23} Z^2 \frac{\rho^2}{m_p^2} T^{-7/2} x^{-3} (1 - e^{-x}) \bar{g}_{\rm ff}(\nu, T) \,{\rm cm}^{-1}. \qquad B_{\nu} \left(T, \nu\right) = j_{\nu} \,/ \,\alpha_{\nu}$$

- 3. Maxwellian temperature averaged (free-free) **Gaunt factor**, $\overline{g}_{ff}(v,T)$ (**Sutherland 1998**)
- 4. Temperature? $P(T) = P_e + P_{rad} (1 e^{-\tau})$ Iterative process because $\tau = \tau(T, \nu)$ (1) $\tau <<1$: $P = P_e$ (1) $\tau <<1$: $P = P_e$ (2) $\tau >>1$: $P = P_e + P_{rad}$, $P_{rad} = a_R T^4 / 3$
- + Synchrotron (non-thermal particles): particles accelerated at shocks

Studying Thermal Emission

- Temporal evolution up to 5 days
- Optical band: detections up to ~2 days (except r/i bands)
- We neglect the external medium emission

Studying Thermal Emission

Origin of Thermal Emission

Petar Mimica

Simulations of jet emission and dynamics

Evolution of Thermal Emission

Petar Mimica

Simulations of jet emission and dynamics

Lyon, October 1st 2014

Importance of CE-Shell Mass

- •RM reference model
- •G0, M2 low density ext. medium
- •S1, S2 stratified ext. medium

•D2 - lower-mass CE-shell (0.5x)•D3 - higher-mass CE-shell (10x)

•CE-shell mass much more important than ext. medium properties
•masses much lower(higher) than 0.26 M_☉ cause light curve to peak and spectral inversion to happen too early(late)
•lower density external medium suppresses late-time flattening

5.0

Synchrotron Emission

Evolution of the non-thermal particles

- Injection of lagrangian particles
- Forward shock
- **Params.**: ϵ_e , ζ_e , ϵ_B , p, a_{acc} , $\gamma_{min,min}$
- Stochastic magn. field: B'st ∝ (ε_B u_s)^{1/2}

Cuesta-Martínez et al. 2014 arXiv:1408.1814

T=0

Synchrotron Emission

Evolution of the non-thermal particles

- Injection of lagrangian particles
- Forward shock
- **Params.**: ϵ_e , ζ_e , ϵ_B , p, a_{acc} , $\gamma_{min,min}$
- Stochastic magn. field: B'st ∝ (ε_B u_s)^{1/2}

Cuesta-Martínez et al. 2014 arXiv:1408.1814

T=0

Origin of Non-Thermal Emission

Petar Mimica

Simulations of jet emission and dynamics

Lyon, October 1st 2014

GRB 101225A Summary

- possible progenitor: NS + He core merger (Thöne *et al.* 2011)
- •we model: jet propagation through secondary star outer layers and external medium:
 - phase 1: jet free expansion until hitting CE-shell
 - phase 2: jet (wider than the funnel) impacts against much denser CE-shell and heats and baryon-loads, ablating and disrupting the CE-shell in the process
 - phase 3: heated and baryon-loaded jet inflates a cavity, entering self-similar regime
- origin of thermal emission:
 - UVOIR observations can be explained as radiation from CE-shell/jet interaction region (~ 5x10¹³ c, much smaller than the surface of the expanding bubble ~ 10¹⁵ cm)
 - properties weakly dependent on external medium profile
 - X-rays: depend on the CE-shell funnel geometry => initially narrower and denser funnel would improve agreement with observations (increase of computational cost)
- •non-thermal emission:
 - moderately relativistic forward shock dominates early evolution, emission compensates thermal deficit for t < 0.2 days
 - no classical afterglow signature due to quick deceleration
- •submitted papers: arXiv:1408.1305, arXiv:1408.1814

Afterglow Model for Swift J1644 + 57

Afterglow Model for Swift J1644 + 57

Long-term Evolution and Motivation for Simulations

- •source unexpectedly brightens a few months after initial peak
- in contrast to predictions of a 1D blast wave model

•possibilities:

- slower material ejected after fast jet, but containing 20x the energy (Berger *et al.* 2012)
- complex environment: stellar debris and circumnuclear medium (de Colle *et al.* 2012)
- abrupt change in CNM density profile (unlikely in GRB case; Mimica & Giannios 2011; Gat *et al.* 2013)
- forward-shock accelerated electrons cooled by X-rays (Kumar *et al.* 2013)
- jet has a complex angular structure (Tchekhovskoy *et al.* 2014;, Wang *et al.* 2014)
- •our work: 1D- and 2D simulations exploring different possibilities

Example: 1D RHD Simulations

Physical model T= 290.25 $L_{j}(t) = L_{j,0} \left(\max \left[1, \left(\frac{t}{t_{j,0}} \right) \right] \right)^{-5/3}$ non-thermal density 10^{4} thermal density 200.00 $L_{j,0} = 5 \times 10^{47} \text{ erg s}^{-1}$ $t_{j,0} = 5 \times 10^5 \text{ s}$ 100.00 $\Gamma_{j,0} = 5$ $\theta_{j,0} = 0.3$ rad $\Theta_0 := \frac{P_0}{\rho_0 c^2} = 10^{-2}$ 0.00 $TM EOS: h(\Theta) = \frac{5}{2}\Theta + \sqrt{\frac{9}{4}\Theta^2 + 1}$ synchrotron peak $J \times 10^{16} \text{ cm}$ $n_{\text{ext}}(R) = 3.33 \times 10^{1} \text{ cm}^{-3} \left(\frac{R}{R_{j,0}}\right)^{-1} \text{ J}$ $\Gamma_{\text{max}} \approx 15 \text{ years}$ $\lim_{R \to 0} 15 \text{ years}$ (Mignone et al. 05) -100.00200.00 -200.00-100.000.00 100,00 200.00

Simulations of jet emission and dynamics Petar Mimica

Lyon, October 1st 2014

Example: 1D RHD Simulations

Physical model T= 290.25 $L_{j}(t) = L_{j,0} \left(\max \left[1, \left(\frac{t}{t_{j,0}} \right) \right] \right)^{-5/3}$ non-thermal density 10^{4} thermal density 200.00 $L_{j,0} = 5 \times 10^{47} \text{ erg s}^{-1}$ $t_{j,0} = 5 \times 10^5 \text{ s}$ 100.00 $\Gamma_{j,0} = 5$ $\theta_{j,0} = 0.3$ rad $\Theta_0 := \frac{P_0}{\rho_0 c^2} = 10^{-2}$ 0.00 $TM EOS: h(\Theta) = \frac{5}{2}\Theta + \sqrt{\frac{9}{4}\Theta^2 + 1}$ synchrotron peak $J \times 10^{16} \text{ cm}$ $n_{\text{ext}}(R) = 3.33 \times 10^{1} \text{ cm}^{-3} \left(\frac{R}{R_{j,0}}\right)^{-1} \text{ J}$ $\Gamma_{\text{max}} \approx 15 \text{ years}$ $\lim_{R \to 0} 15 \text{ years}$ (Mignone et al. 05) -100.00200.00 -200.00-100.000.00 100,00 200.00

Simulations of jet emission and dynamics Petar Mimica

Lyon, October 1st 2014

On-axis 1D Simulation Light Curves

•1D simulation parameter scan:

•fixed L_j/n_{18} , t_j , θ_j , Γ_j

- •variable n_{18} , ϵ_e , ϵ_B , ζ_e
- single-component jet models cannot explain earlyand late-time observations simultaneously
 - •fast, narrow jet: early times
 - slow, wide jet: late times
- •X-ray cooling does not produce sufficient radioemission early-time deficit

1D Two-component Jets: Light Curves

Petar Mimica Simulations of jet emission and dynamics

Lyon, October 1st 2014

1D Two-Component Jet: On-axis Radio Maps

Petar Mimica Simulations of jet emission and dynamics

Lyon, October 1st 2014

28

1D Two-Component Jet: On-axis Radio Maps

.

1.0x-36 1.0x-37

8 Ge+08

260.02458321272

1.0x-06 7.5a-87

> 5.0+87 2.5+87

2,0=+(1)

-001

22

1D Two-Component Jet: Off-axis Radio Maps

Petar Mimica

Simulations of jet emission and dynamics

Lyon, October 1st 2014

29

131.646549657957

164.160181235736

1196.72096404592

396.918361656386

1492 28316926503

value

3+-01 2+-01 1+-01 1++111 494.947952335986

1860 8423552161

2D Simulations (preliminary)

2D Simulations (preliminary)

2D Simulations (preliminary)

- we simulate jet dynamics and emission using an iterative process:
 - jets simulated using 1D and 2D RHD simulations
 - non-thermal and thermal emission computed by post-processing a large number (~10³) simulation snapshots
 - emission, absorption, intensity analysed in observer frame
- •GRB 101225A:
 - modelled as jet interacting with progenitor outer layers and interstellar medium
 - secondary star ejects CE-shell which disrupts the jet (no classical afterglow)
 - thermal emission predominantly emitted from jet/CE-shell interaction region
 - non-thermal emission comes from the bubble forward shock
- •Swift J1644+53 (in progress):
 - modelled as TDE-powered jet interacting with circumnuclear medium
 - unexpected late-time increase in radio emission
 - single-component jet models: probably excluded
 - early-time X-ray cooling: probably excluded
 - external medium structure: probably excluded
 - most promising model: two-component jet