Outflows from young stellar objects and their impact on star formation

Robi Banerjee 1, @

1 : Hamburg Sternewarte, University of Hamburg

Gojenbergsweg 112 21209 Hamburg - Germany

Jets and outflows are observed around young stellar objects over the whole stellar spectrum, from brown dwarfs to high-mass stars. Those outflows are most likely driven by the coupling of magnetic fields that thread the underlying accretion disc. If this is a universal mechanism, such a disc-wind configuration should be self-consistently build up during the collapse of individual cloud cores. Additionally, jets and outflows feed back energy and momentum to the ambient gas in star-forming regions. Yet, it is still controversial whether feedback from outflows are able to regulate star formation in molecular clouds.

In this talk, I will summarise recent results from numerical simulations on outflow launching during the birth of stars and their impact on star-forming regions based on sub-grid modells of outflows.

Subject :	:	oral
Topics	:	Astrophysics
Topics	:	Numerical simulations

Outflows from YSOs and their Impact on Star Formation

Robi Banerjee

Hamburg University

Collaborators: Christoph Federrath (Monash), Daniel Seifried (Cologne), Thomas Peters (MPA)

Outflows & Jets

- Outflows & Jets are ultimately linked to the formation of stars
 - ⇒ what's their impact on this process?
 - ⇒ how to model it self-consistently?

Collapse of Magnetised Cloud Cores

magnetically driven Jets / Outflow from YSOs

Onset of large scale outflow:

at few 100 AU

magnetic tower configuration (e.g. Lynden-Bell 2003)

collapse phase pinched in magnetic field

.... I 430 years later: onset of a large scale outflow

Robi Banerjee, Accretion & Outflows, Lyon, October 1st 2014

Banerjee & Pudritz 2006

Magnetic tower flow

- build up of toroidal field \rightarrow magnetic pressure
- outward propagation of shock fronts
- magnetic bubble

Magnetic tower flow

- build up of toroidal field \rightarrow magnetic pressure
- outward propagation of shock fronts
- magnetic bubble

Large scale outflow

- Magnetic field is
 compressed with the gas
- Rotating disk generates
 toroidal magnetic field
 ⇒outflow
- Shock fronts are pushed outwards (magnetic tower)
- •Outflow velocities v ~ 0.4 km/sec, M ~ 2-3
- •Accretion: funneled along the
 - rotation axis, through disk

$\Delta x \approx 5 \times 10^9 \text{ cm} (0.07 \text{ R}_{sol}) \text{ at } l_{ref} = 27$ $\implies \text{Onset of inner disk jet}$

small scale disk jet

- Magnetic field strongly pinched and warped
- •Angle with disk plane < 60°
- → magneto-centrifugal jet launch (Blandford & Payne 1982)
- "Onion" shaped velocity structure
- Outflow velocities
 - v ~ 4 5 km/sec, Mach ~ 4

small scale disk jet

- Magnetic field strongly pinched and warped
- •Angle with disk plane < 60°
- → magneto-centrifugal jet launch (Blandford & Payne 1982)
- "Onion" shaped velocity structure
 - Outflow velocities
 - v ~ 4 5 km/sec, Mach ~ 4

 \implies can not follow long-term, large-scale evolution

Sink Particles for the FLASH code

 AMR/SPH simulations can't cover the full spatial range for star formation => introduce "black boxes" = Sink Particles

Sink Particles for the FLASH code

- AMR/SPH simulations can't cover the full spatial range for star formation => introduce "black boxes" = Sink Particles
 - \implies modeling of dense regions in **collapse** simulations,

e.g. star formation (M.Bate et al. 1995)

 'controlled' violation of the Truelove criterion (*Truelove et al. 1997*): preventing artificial fragmentation by resolving the

Jeans length

- allows long term runs of star forming regions: binaries, stellar clusters, outflows also: feedback, drag forces, ...
- **BUT:** 'arithmetic' part of the system, i.e.
 ⇒ physical interpretation?

Based on the particle module in FLASH 2.x (Paul Ricker):

- handles boundaries
- moves particles across CPUs/blocks
- mapping of grid variables onto particles and vice versa
- advances particles

Extensions / modifications:

- creation of particles on the 'fly'
- gravity: use $1/r^2$ acceleration for particle contribution
- time dependent particle masses: accretion / loss
- momentum transfer onto the particles
- back-reaction onto the grid (feedback)
- MPI communication of global particle list

Gravity

originally:

- I. mapping of particle density onto grid (CIC, NGP, TSC)
- 2. solve Poisson's equation with gas-density + particle-density
- 3. map acceleration to particle
- 4. advance particle (Euler, Leapfrog)

Sink Particle Module:

- use direct acceleration from particles
 - ⇒ more accurate (e.g. binary system)
 - \Rightarrow faster for small particle numbers

• Gravity

with $1/r^2 \rightarrow f(r, r_{soft})$: gravitational softening

Gravitational softening

- Sub-Cycling
 - close "binary" interaction can limit time step:

$$\Delta t_{\rm gs} = C_{\rm gs} \, \min_{n,m} \left(\frac{\min(|\mathbf{r}_{nm}|, \Delta x)}{|\mathbf{g}_{\rm sinks, n}|} \right)^{1/2}$$

 \Rightarrow sub-cycle on particle-particle interaction till:

$$N_{\rm cycles} \,\Delta t_{\rm gs} = \Delta t_{\rm hydro}$$

Sub-Cycling

\Rightarrow after 10 orbits

Sub-Cycling

 \Rightarrow after 1000 orbits:

two particles around the common center

Particle creation

Conditions by gravitational **collapse**:

0. Density criterion (within accretion radius r_{accr}):

$$\rho_{\rm gas} > \rho_{\rm crit} \quad (\rho_{\rm crit} \text{ parameter})$$

 \Rightarrow choose ρ_{crit} so that Truelove criterion is not violated:

$$\lambda_{\rm J} > N_{\rm J} \Delta x_{\rm min}$$

+ Jeans refinement condition ($\lambda J = (\pi c 2/G\rho)^{1/2}$)

Particle creation

Conditions by gravitational collapse:

0. Density criterion: $\rho_{gas} > \rho_{crit}$ (ρ_{crit} parameter)

- 1. is on the highest level of refinement,
- 2. is converging, $\nabla \cdot \mathbf{v} < 0$
- 3. has a central gravitational potential minimum,
- 4. is Jeans-unstable, $|E_{grav}| > 2E_{th}$
- 5. is bound, and $E_{\text{grav}} + E_{\text{th}} + E_{\text{kin}} + E_{\text{mag}} < 0$
- 6. is not within r_{acc} of an existing sink particle.

Federrath, RB, Clark & Klessen et al. 2010

Sink Particles in FLASH

Particle creation

Sink Particles in FLASH

Mass accretion & linear momentum

Mass accretion from excess gas density within $r_i < r_{accr}$:

$$\mathbf{M}_{i} = \mathbf{M}_{i} + \Sigma_{j} \Delta \operatorname{Vol}_{j} \left(\rho_{j} - \rho_{\operatorname{crit}} \right)$$

additional check for convergent flow, i.e. $v_{\rm rad} < 0$ Mass conservation ensured

+ linear momentum conservation:

$$\mathbf{P}_i = \mathbf{P}_i + \Sigma_j \Delta \mathbf{m}_j \mathbf{v}_j$$

angular momentum

no unique solution for angular momentum conservation:

$$\mathbf{R} \times \mathbf{v}_{\rm cm} = \frac{1}{M} \mathbf{L}$$

 \Rightarrow internal spin:

$$\mathbf{L}_{\mathrm{spin}} = \mathbf{L}_{\mathrm{gas}}' - \mathbf{L}_{\mathrm{gas}}$$

use for sub-grid-scale modelling, e.g. outflows & jets

Comparison to SPH Simulations

Federrath et al. 2010

• collapse of **turbulent** cloud cores

Robi Banerjee, Accretion & Outflows, Lyon, October 1st 2014

Comparison to SPH Simulations

Federrath et al. 2010

• collapse of **turbulent** cloud cores

Comparison to SPH Simulations

- good agreement
- differences due to hydro
 - \Rightarrow SPH slightly more dissipative
 - \Rightarrow cluster more centrally condensed

Applications

disc formation and jet launching by Daniel Seifried

feedback from ionizing radiation by *Thomas Peters*

Outflows from Massive Stars: Young HII Regions

3D Simulations of collapsing cloud cores with ionization feedback from young massive stars (*Thomas Peters*, ITA)

- massive core with $M_{\rm core} = 1000 \ M_{\odot}$
- $R_{core} = 1.6 \text{ pc}$
- $\rho_{core} = 1.27 \times 10^{-20} \text{ g cm}^{-3}; \rho \sim r^{-1.5}$
- initial core rotation with $\beta = 0.05$
- magnetized case: $\mu = 14 \mu_{crit} (B = 10 \mu G)$

- accreting sink particles ⇒ luminosity and temperature using ZAMS (*Paxton* 2004)
 + protostellar accretion luminosity (*Hosokawa & Omukai* 2009)
- highest grid resolution $\sim 100 \text{ AU}$
- ray-tracing based on Rijkhorst et al. 2006

Massive Star Formation: Dynamics of HII Regions

Run B: formation of multiple stars

courtesy: Zilken, NIC, Jülich

Robi Banerjee, Accretion & Outflows, Lyon, October 1st 2014

Massive Star Formation: Dynamics of HII Regions

Collapse of a massive, rotating cloud core $(M_{core} = 1000 M_{sol})$ + ionization feedback

Simulations by Thomas Peters

Disk edge on

Disk plane

Massive Star Formation: Dynamics of HII Regions

- Ionization feedback does not shut off star formation
- accretion onto the most massive star is cut off by **fragmentation induced starvation** (Peters et al. 2010)

Comparison with Observations: Outflows

Synthetic CO maps with the ALMA simulator CASA
 Orion distance: 414 pc

Comparison with Observations: Outflows

	OUTFLOW PARAMETERS DERIVED FROM ALMA SIMULATIONS										
		М	v	Р	Е	L	Ń	Т	R		
		(M_{\odot})	$(\mathrm{km}\ \mathrm{s}^{-1})$	$(M_{\odot} \text{ km s}^{-1})$	(10^{44} erg)	(L_{\odot})	$(10^{-3} \ { m M}_{\odot} \ { m yr}^{-1})$	(yr)	(AU)		
Run A	blue	$2.50{\pm}0.26$	$3.9 {\pm} 0.9$	$9.93 {\pm} 3.32$	3.94 ± 2.22	$8.15 {\pm} 6.23$	6.26 ± 1.91	400	4100		
	red	$1.80 {\pm} 0.18$	$3.8{\pm}0.9$	$6.82 {\pm} 2.30$	$2.58{\pm}1.48$	$5.33{\pm}4.12$	$4.51{\pm}1.37$	400	4100		
Run B (left)	blue	$1.12{\pm}0.13$	3.3 ± 0.4	$3.68 {\pm} 0.87$	1.21 ± 0.43	2.51 ± 1.39	$2.80 {\pm} 0.89$	400	3300		
27 20	red	$2.08{\pm}0.12$	$3.5{\pm}0.5$	$7.26{\pm}1.55$	$2.53{\pm}0.93$	$5.24 {\pm} 2.98$	$5.21{\pm}1.35$	400	2100		
Run B (right)	blue	$1.31 {\pm} 0.12$	$3.3 {\pm} 0.4$	4.29 ± 0.91	1.41 ± 0.47	$2.92{\pm}1.55$	$3.26{\pm}0.95$	400	5000		
	red	$0.75{\pm}0.08$	$3.5{\pm}0.5$	$2.62{\pm}0.69$	0.91 ± 0.38	$1.89{\pm}1.17$	$1.88{\pm}0.58$	400	4100		

TABLE 1 OUTFLOW PARAMETERS DERIVED FROM ALMA SIMULATIONS

Peters, Klaassen et al. 2012

 → derived outflow parameters are on the low end of observations
 → lonisation feedback is not the main driver of molecular outflows
 → common low mass companions drive large scale molecular outflows? (see also Peters et al. 2014, Collective Outflows ...)

Magnetic fields during Massive Star Formation?

outflows launched by magnetic fields?

Robi Banerjee, Accretion & Outflows, Lyon, October 1st 2014

Magnetic fields during Massive Star Formation?

Ideal MHD equations + (self-)gravity

references: eg. Chandrasekhar 1956; Mestel 1969; Blandford&Payne 1982; Pudritz&Norman 1983 reviews: eg. Königl&Pudritz 1999 (PPIV); Heyvaerts 2000; Pudritz et al. 2007 (PPV)

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\mathbf{v}\rho) &= 0\\ \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} &= -\frac{1}{\rho} \nabla p - \nabla \Phi + \frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{4\pi\rho}\\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{v} \times \mathbf{B})\\ \nabla \cdot \mathbf{B} &= 0\\ \Delta \Phi = 4\pi G\rho \end{aligned}$$

Lorentz force:

(assume axi-symmetry, i.e. $\partial_{\Phi} \mathbf{B} = 0$)

$$\mathbf{j} \times \mathbf{B} = -\frac{1}{2} \nabla \mathbf{B}^2 + (\mathbf{B}_{\mathrm{p}} \cdot \nabla) \left(\mathbf{B}_{\mathrm{p}} + B_{\phi} \mathbf{e}_{\phi} \right) \underbrace{-\frac{B_{\phi}^2}{R} \mathbf{e}_R}_{R}$$

hoop stress (jet collimation)

Lorentz force:

(assume axi-symmetry, i.e. $\partial_{\Phi} \mathbf{B} = 0$)

$$\mathbf{j} \times \mathbf{B} = -\frac{1}{2} \nabla \mathbf{B}^2 + (\mathbf{B}_{\mathrm{p}} \cdot \nabla) \left(\mathbf{B}_{\mathrm{p}} + B_{\phi} \mathbf{e}_{\phi} \right) \underbrace{-\frac{B_{\phi}^2}{R} \mathbf{e}_R}_{\mathbf{p}}$$

hoop stress (jet collimation)

2

different force types:

- magnetic pressure: force along gradient
- tension: force along magnetic field lines
- hoop stress: force towards axis

Lorentz force:

(assume axi-symmetry, i.e. $\partial_{\Phi} \mathbf{B} = 0$)

$$\mathbf{j} \times \mathbf{B} = -\frac{1}{2} \nabla \mathbf{B}^2 + (\mathbf{B}_{\mathrm{p}} \cdot \nabla) \left(\mathbf{B}_{\mathrm{p}} + B_{\phi} \mathbf{e}_{\phi} \right) - \frac{B_{\phi}^2}{R} \mathbf{e}_R$$

0

"beads on a wire" Blandford-Payne type acceleration

magnetic pressure acceleration

courtesy Matsumoto & Shibata, 1999

Jet & Outflow Launching

Specific energy conserved along field lines

with separation of poloidal and toroidal velocity and field components:

$$\begin{aligned} \epsilon &= \frac{1}{2}v^2 + \Phi + h - \frac{r\omega B_{\phi}}{4\pi k} \\ &= \frac{1}{2}v_{\rm pol}^2 + \frac{1}{2}v_{\phi}^2 + \Phi + h - \frac{v_{\phi}}{v_{\rm pol}}\frac{1}{4\pi}\frac{B_{\phi}B_{\rm pol}}{\rho} + \frac{1}{4\pi}\frac{B_{\phi}^2}{\rho} \end{aligned}$$

 \implies new, generalised outflow criterion

to distinguish between tower and centrifugal launching

mew, generalised outflow criterion to distinguish between tower and centrifugal launching

⇒ magneto-centrifugal launching (a-la Blanford & Payne):

$$\frac{r}{z}\frac{1}{GM}\left(\frac{v_{\phi}^2}{r^2}(r^2+z^2)^{3/2}-GM\right)\left/\left(\frac{B_z}{B_r}\right)>1$$

 \implies any outward acceleration:

$$\partial_{\text{pol}} \left(\frac{1}{2} v_{\phi}^2 + \Phi - \frac{v_{\phi}}{v_{\text{pol}}} \frac{1}{4\pi} \frac{B_{\phi} B_{\text{pol}}}{\rho} + \frac{1}{4\pi} \frac{B_{\phi}^2}{\rho} \right) < 0$$

Seifried et al. 2012

Collapse of Massive Cloud Cores

Parameter study with 3D Simulations of massive collapsing cloud cores with Sink Particles

- $M_{core} = 100 M_{\odot}$
- $R_{core} = 0.125 \text{ pc}$
- density profile: $\rho \sim r^{-1.5}$
- $\rho_{core} = 2.3 \times 10^{-17} \text{ g cm}^{-3}$
- rotation with $\beta = 0.0004 0.2$
- mass-to-flux: $\mu = 2.6 \dots 26 \mu_{crit}$
- $B_z = 1.3 0.13$ mG aligned with rotation axis
- resolution: 4.7 AU

Seifried, RB, Klessen, Duffin, Pudritz 2011

A Generalised Outflow Criterion

Outflow / Lauchning mechanism

Robi Banerjee, Accretion & Outflows, Lyon, October 1st 2014

A Generalised Outflow Criterion

Outflow / Lauchning mechanism

Robi Banerjee, Accretion & Outflows, Lyon, October 1st 2014

A Generalised Outflow Criterion

Outflow / Lauchning mechanism

Robi Banerjee, Accretion & Outflows, Lyon, October 1st 2014

Parameter study of collapsing cores

Outflow / Launching mechanism

stronger magnetic field: $\mu = 5.2 \ \mu_{crit}$

- inefficient magneto-centrifugal launching
- bubble like "outflow"

Synthetic Observations

 \implies Helical structure similar to outflow around the A-type star HD 163296 (D = 122 pc)

Sub-Grid-Scale Model

SGS Model: Single Outflow

Low resolution No subgrid model High resolution No subgrid model Low resolution With SGS outflow model

Federroth et al. (2014)

SGS Model: Single Outflow

Low resolution No subgrid model High resolution No subgrid model

Low resolution With SGS outflow model

ederrath et al. (2014)

⇒ low resolution SGS outflow model recovers fast jet of high resolution self-consistent outflow simulation

• Jets are powerful:

$$L_{jet} = \frac{\dot{M}_{jet}v_{jet}^2}{2} \approx 2.9 \times 10^{32} \left(\frac{\dot{M}_{jet}}{10^{-8} M_{\odot} \text{ yr}^{-1}}\right)$$
$$\times \left(\frac{v_{jet}}{300 \text{ km s}^{-1}}\right)^2 \text{ ergs s}^{-1} \sim 8\% L_{\odot}$$
$$E_{jet} = L_{jet}\tau_{jet} \approx 10^{44} \text{ ergs} \qquad \text{with } \tau_{jet} = 10^4 \text{ yrs}$$
$$\Rightarrow \text{ cf. } E_{turb} \sim 10^{46} \text{ ergs}$$

 \implies Jets from a little stellar cluster **could** maintain the turbulence

• Jets are powerful:

$$L_{jet} = \frac{\dot{M}_{jet}v_{jet}^2}{2} \approx 2.9 \times 10^{32} \left(\frac{\dot{M}_{jet}}{10^{-8} M_{\odot} \text{ yr}^{-1}}\right)$$
$$\times \left(\frac{v_{jet}}{300 \text{ km s}^{-1}}\right)^2 \text{ ergs s}^{-1} \sim 8\% L_{\odot}$$
$$E_{jet} = L_{jet}\tau_{jet} \approx 10^{44} \text{ ergs} \qquad \text{with } \tau_{jet} = 10^4 \text{ yrs}$$
$$\Rightarrow \text{ cf. } E_{turb} \sim 10^{46} \text{ ergs}$$

 \implies Jets from a little stellar cluster **could** maintain the turbulence

\implies But how **efficient** do they couple to the ISM?

- numerical experiments with single, high Mach number jets (momentum injection)
 detailed analysis with velocity PDFs
- log₁₀(velocity) log₁₀(velocity) 2 2 0 (-2 -2 10 8 10 2 6 2 8 4 4 6 t = 5.00t = 3.00RB, Klessen & Fendt 2007

mber of blocks =

- supersonic fluctuations
 decay quickly: E∝t⁻²
 (Mac Low et al. '98)
- supersonic fluctuations
 occupy only a small
 fraction of all fluctuations

Influence of Magnetic Fields

t = 2.00

magnetic fields **suppress** the propagation of large amplitude velocity fluctuations

stabilize jet (aligned field)

Influence of Magnetic Fields

Global simulation

• collapse of a turbulent

cloud core (Li&Nakamura 2006; Carroll et al. 2008, Dale & Bonnell 2008, Wang et al. 2010, Federrath et al. 2014)

Global simulation

• collapse of a turbulent

cloud core (Li&Nakamura 2006; Carroll et al. 2008, Dale & Bonnell 2008, Wang et al. 2010, Federrath et al. 2014)

SGS Model: Outflows during Cluster Formation

KODI Banerjee, Accretion & Outnows, Lyon, October 1st 2014

SGS Model: Outflows during Cluster Formation

Outflows & Jets do not stop star formation

Wang et al. (2010): Collapse of a massive, turbulent cloud core $(M_{core} = 1600 M_{sol}) + feedback$ from jets & outflows

Wang, Li, Abel & Nakamura 2010

 \implies Outflows & Jets do not stop star formation

Conclusion

- Jets & Outflows: self-consistent treatment in collapse simulation is still challenging (but see Hennebelle et al.)
- SGS models allow to scan a larger parameter space (at lower resolution)
- Influence of Outflow feedback?
 - \implies **not** conclusive:
 - \implies might not be too important on cloud scales

→ v= 11.4620 (km/s) Hennebelle et al. 2011