A kinematic dynamo model for accretion disks around Kerr black holes

Luca Del Zanna 1, 2, 3, *, @ , Niccolo' Bucciantini 2, 3, @ , Matteo Bugli 4, @

1 : Dipartimento di Fisica e Astronomia, Universita' di Firenze

Via G. Sansone 1, Sesto Fiorentino - Italy

2: INAF - Osservatorio Astrofisico di Arcetri

L.go Fermi 5 Firenze - Italy

3 : INFN - Sezione di Firenze

Via G. Sansone 1, Sesto Fiorentino - Italy

4: MPA - Garching

Karl-Schwarzschild Strasse 1, Garching - Germany

* : Corresponding author

Ordered, large-scale magnetic fields are believed to be a fundamental ingredient in accretion processes that power the outflows and jets of AGNs and GRBs, especially in the Blandford-Znajek scenario where the central engine is a rotating black hole. However, the origin of such fields is still debated. A possibilty is a combination of the disk differential rotation and the likely presence of turbulence motions in the disk itself, which provides a mean-field alpha-Omega dynamo action, capable of enhancing any initial seed magnetic field. As a first astrophysical application of the ECHO code in its recent version supplemented by a generalized Ohm law, we present here a kinematic study of dynamo effects in thick accretion disks around Kerr black holes.

Subject : Topics oral Plasmaphysics

:

:

A kinematic dynamo model for accretion disks around Kerr black holes

Luca Del Zanna

Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze INAF - Osservatorio Astrofisico di Arcetri INFN - Sezione di Firenze

luca.delzanna@unifi.it

and: Matteo Bugli, Niccolò Bucciantini

Accretion and outflows throughout the scales, 2014, Lyon

Outline

- Introduction to dynamo
 - Introduction
 - Mean-field dynamo in classical MHD
- Non-ideal Ohm's law in 3 + 1 GRMHD
 - The ECHO code for GRMHD
 - Covariant and 3 + 1 formulations
 - IMEX schemes for stiff relaxation equations
 - Numerical tests
- 8 Kinematic dynamo in accretion tori
 - Initial equilibrium and set up
 - Study of the Ω effect vs resistivity
 - Study of the *α* Ω dynamo
- 4 Conclusions and future work
 - Conclusions
 - Future work

Introduction Mean-field dynamo in classical MHD

Introduction to dynamo

Introduction Mean-field dynamo in classical MHD

Amplification of Magnetic Fields

Ordered magnetic fields on large scales are a fundamental ingredient of processes related to accretion disks:

- magnetocentrifugally driven winds and jets (YSOs, AGNs),
- Blandford-Znajek mechanism from Kerr Black Holes (AGNs, collapsar model for GRBs).

A mean-field dynamo mechanism may do the job: *correlated* small-scale turbulent fluctuations in velocity and magnetic field (possibly triggered by MRI) can provide a mean electromotive force and amplify seed magnetic fields.

Here we are going to show how to move from classical MHD recipes to a form suitable for numerical GRMHD.

As a first example: *kinematic* dynamo in thick accretion tori.

Introduction Mean-field dynamo in classical MHD

Dynamo action in GRMHD

Previous works: kinematic dynamo in thick disks *neglecting the displacement current* (Khanna & Camenzind, 1996; Brandenburg, 1996).

Our ultimate goal is to perform fully dynamic GRMHD simulations of BH accretion from disks with dynamo action at work. The steps so far have been:

- First covariant closure of the generalized Ohm's law for resistive GRMHD and dynamo action, adaptation to 3 + 1, and implementation in the ECHO and X-ECHO codes: Bucciantini & Del Zanna, MNRAS 428, 71, 2013
- Introduction of high-order RK-IMEX schemes: Del Zanna, Bugli, Bucciantini, ASP Conf. Series 488, 217, 2014
- Study of the kinematic dynamo process in thick accretion disks around Kerr Black Holes: Bugli, Del Zanna, Bucciantini, MNRAS 440L, 41, 2014

Introduction Mean-field dynamo in classical MHD

Mean-field dynamo in classical MHD

Consider small-scale turbulent fluctuations in the fields v e B:

$$\boldsymbol{v}(\boldsymbol{x},t) = \boldsymbol{v}_0(\boldsymbol{x},t) + \delta \boldsymbol{v}(\boldsymbol{x},t), \quad \boldsymbol{B}(\boldsymbol{x},t) = \boldsymbol{B}_0(\boldsymbol{x},t) + \delta \boldsymbol{B}(\boldsymbol{x},t)$$

[assumption of kinematical regime $\Rightarrow \mathbf{v}_0(\mathbf{x}, t)$ fixed].

The resistive induction equation for the mean magnetic field reads:

$$\partial_{t} \boldsymbol{B}_{0} = \boldsymbol{\nabla} \times (\boldsymbol{v}_{0} \times \boldsymbol{B}_{0}) + \eta_{t} \nabla^{2} \boldsymbol{B}_{0} + \boldsymbol{\nabla} \times \boldsymbol{\mathcal{E}}$$
$$\boldsymbol{\mathcal{E}} = \langle \delta \boldsymbol{v} \times \delta \boldsymbol{b} \rangle \simeq \alpha \boldsymbol{B}_{0} - \beta \boldsymbol{\nabla} \times \boldsymbol{B}_{0}$$
$$\Downarrow$$
$$\partial_{t} \boldsymbol{B} = \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B}) + \eta \nabla^{2} \boldsymbol{B} + \alpha \boldsymbol{\nabla} \times \boldsymbol{B}$$

- Increase of the magnetic resistivity ($\eta = \eta_r + \beta$)
- Generation of magnetic field parallel to the current ($J = \nabla \times B$)
- Generalized Ohm's law ($\boldsymbol{E}' \equiv \boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} = \eta \boldsymbol{J} \alpha \boldsymbol{B}$)

Introduction Mean-field dynamo in classical MHD

The $\alpha - \Omega$ dynamo

Let us decompose the magnetic field (and the other quantities) as

$$\boldsymbol{B} = \boldsymbol{B}_P + B_T \boldsymbol{e}_T, \quad \boldsymbol{B}_P = \boldsymbol{\nabla} \times (\boldsymbol{A}_T \boldsymbol{e}_T).$$

The induction equation is split as

$$\partial_t B_T + (\boldsymbol{U}_P \cdot \boldsymbol{\nabla}) B_T = (\boldsymbol{B}_P \cdot \boldsymbol{\nabla}) \boldsymbol{U}_T + \eta \nabla^2 B_T$$
$$\partial_t A_T + (\boldsymbol{U}_P \cdot \boldsymbol{\nabla}) A_T = \alpha B_T + \eta \nabla^2 A_T$$

- Differential rotation \Rightarrow Generation of toroidal field (Ω effect)
- Toroidal field \Rightarrow Generation of poloidal field (α effect)

$$\boldsymbol{B}_P \Rightarrow \boldsymbol{B}_T \Rightarrow \boldsymbol{B}_P \Rightarrow \dots$$

Exponentially growing $\alpha - \Omega$ dynamo modes, damped by resistivity.

Introduction Mean-field dynamo in classical MHD

The solar cycle and the butterfly diagram

- Flux tubes of growing toroidal magnetic field emerge through the photosphere: formation of a Sun Spot
- Formation at latitudes ±35°
- Migration towards the equator
- Strong periodicity ~ 11 yr (solar rotation < 1 month)

A possible mechanism at its basis is the $\alpha - \Omega$ dynamo.

L. Del Zanna - Accretion and outflows throughout the scales, 2014, Lyon A kinematic dynamo mod

A kinematic dynamo model for accretion disks around Kerr black holes

Introduction Mean-field dynamo in classical MHD

MRI and dynamo in stratified disks

Evolution of (classical) MHD turbulence in accretion disks is better studied in local shearing box simulations. Brief summary of results:

- MRI induces turbulence and the Shakura-Sunyaev term needed for angular momentum transport (Balbus & Hawley, 1991)
- Stratification allows for magnetic buoyancy (Brandenburg, 1995)
- Turbulent dynamo, butterfly diagrams, and sometimes (debated) magnetocentrifugally driven outflows (Davis et al., 2010; Flock et al., 2012; Bai & Stone, 2013; Fromang et al., 2013)

The ECHO code for GRMHD Covariant and 3 + 1 formulations IMEX schemes for stiff relaxation equations Numerical tests

Non-ideal Ohm's law in 3 + 1 GRMHD: formulation, methods, tests

The ECHO code for GRMHD Covariant and 3 + 1 formulations IMEX schemes for stiff relaxation equations Numerical tests

The ECHO code for GRMHD

Numerical simulations will be performed with the *Eulerian Conservative High-Order* ECHO code (Del Zanna et al., 2007), a versatile tool for MHD and GRMHD combining shock-capturing properties and accuracy.

Main features (Londrillo & Del Zanna, 2000; 2004):

- conservative form, RK time-stepping,
- finite differences, high-order methods (CENO, WENO, MP...),
- simplified Riemann solvers: LLF, HLL, HLLC,
- F90, various geometries, different physical modules,
- Upwind Constrained Transport (UCT) based on 4-state B fluxes.

Upgrades:

- evolution of Einstein equations (Bucciantini & Del Zanna 2011),
- radiation hydrodynamics (Zanotti et al., 2011),
- resistivity and dynamo (Bucciantini & Del Zanna, 2013).

The ECHO code for GRMHD Covariant and 3 + 1 formulations IMEX schemes for stiff relaxation equations Numerical tests

Conservative 3 + 1 equations

In numerical GRMHD the spacetime metric is split in the 3 + 1 form

$$\mathrm{d}\boldsymbol{s}^{2} = -\alpha^{2}\mathrm{d}t^{2} + \gamma_{ij}\,(\mathrm{d}\boldsymbol{x}^{i} + \beta^{i}\mathrm{d}t)(\mathrm{d}\boldsymbol{x}^{j} + \beta^{j}\mathrm{d}t),$$

where α and β^i are, respectively, the *lapse function* and *shift vector* ($\alpha = 1, \beta^i = 0$ in Newtonian MHD), and γ_{ij} is the 3-metric tensor.

The conservative equations in ECHO for ideal GRMHD are

$$\frac{\partial}{\partial t}\sqrt{\gamma} \begin{bmatrix} D\\S_{j}\\E\\B^{j} \end{bmatrix} + \frac{\partial}{\partial x^{i}}\sqrt{\gamma} \begin{bmatrix} DV^{i}\\\alpha S_{j}^{i} - \beta^{i}S_{j}\\\alpha S^{i} - \beta^{i}E\\V^{i}B^{j} - V^{j}B^{i} \end{bmatrix} = \sqrt{\gamma} \begin{bmatrix} 0\\\frac{1}{2}\alpha S^{ik}\partial_{j}\gamma_{ik} + S_{i}\partial_{j}\beta^{i} - E\partial_{j}\alpha\\\alpha S^{ij}K_{ij} - S^{j}\partial_{j}\alpha\\0 \end{bmatrix}$$

where K_{ij} is the extrinsic curvature and $V^i = \alpha v^i - \beta^i$ is the transport velocity.

Let us now relax the ideal Ohm law (the same in MHD and GRMHD):

$$\boldsymbol{E} = -\boldsymbol{v} \times \boldsymbol{B}.$$

The ECHO code for GRMHD Covariant and 3 + 1 formulations IMEX schemes for stiff relaxation equations Numerical tests

Covariant generalized Ohm's Law

Covariant Maxwell's equations:

$$\nabla_{\mu} F^{\mu\nu} = -I^{\nu}, \quad \nabla_{\mu} F^{*\mu\nu} = 0$$

$$F^{\mu\nu} = u^{\mu} e^{\nu} - u^{\nu} e^{\mu} + \epsilon^{\mu\nu\lambda\kappa} b_{\lambda} u_{\kappa}, \quad I^{\mu} = q_0 u^{\mu} + j^{\mu}$$

Fully covariant formulation for a resistive plasma with dynamo action:

$$\begin{aligned} \mathbf{e}^{\mu} &= \eta j^{\mu} + \xi \mathbf{b}^{\mu} \\ (\xi &\equiv -\alpha_{dyn}, \quad \eta = \eta_r + \beta_{dyn}) \\ &\downarrow \\ \Gamma[\mathbf{E} + \mathbf{v} \times \mathbf{B} - (\mathbf{E} \cdot \mathbf{v})\mathbf{v}] = \eta (\mathbf{J} - q\mathbf{v}) + \xi \Gamma[\mathbf{B} - \mathbf{v} \times \mathbf{E} - (\mathbf{B} \cdot \mathbf{v})\mathbf{v}] \\ \text{Classical limit } (|\mathbf{v}| \ll 1, |\mathbf{E}| \ll |\mathbf{B}|): \end{aligned}$$

$$\mathbf{E}' \equiv \mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{J} + \xi \mathbf{B}$$

The ECHO code for GRMHD Covariant and 3 + 1 formulations IMEX schemes for stiff relaxation equations Numerical tests

Implementation within 3 + 1 GRMHD

Maxwell's equations in 3 + 1 form are:

$$\gamma^{-1/2}\partial_t\left(\gamma^{1/2}\boldsymbol{B}\right) + \boldsymbol{\nabla} \times \left(+\alpha \boldsymbol{E} + \boldsymbol{\beta} \times \boldsymbol{B}\right) = 0, \qquad (\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0)$$

$$\gamma^{-1/2}\partial_t \left(\gamma^{1/2} \boldsymbol{E}\right) + \boldsymbol{\nabla} \times (-\alpha \boldsymbol{B} + \boldsymbol{\beta} \times \boldsymbol{E}) = -(\alpha \boldsymbol{J} - \boldsymbol{q} \boldsymbol{\beta}), \qquad (\boldsymbol{\nabla} \cdot \boldsymbol{E} = \boldsymbol{q})$$

Computing J from Ohm's law we get:

$$\gamma^{-1/2}\partial_t(\gamma^{1/2}\boldsymbol{E}) + \boldsymbol{\nabla} \times (-\alpha\boldsymbol{B} + \boldsymbol{\beta} \times \boldsymbol{E}) + (\alpha\boldsymbol{v} - \boldsymbol{\beta})\boldsymbol{\nabla} \cdot \boldsymbol{E} = -\alpha\Gamma \eta^{-1}\{[\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} - (\boldsymbol{E} \cdot \boldsymbol{v})\boldsymbol{v}] - \xi[\boldsymbol{B} - \boldsymbol{v} \times \boldsymbol{E} - (\boldsymbol{B} \cdot \boldsymbol{v})\boldsymbol{v}]\}$$

A stiff equation: terms $\propto \eta^{-1}$ can evolve on time scales $\tau_{\eta} \ll \tau_{h}$.

Letting $\eta = \xi = 0$ we retrieve the ideal case:

$$\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B} - (\boldsymbol{E} \cdot \boldsymbol{v}) \boldsymbol{v} = 0 \Rightarrow \boldsymbol{E} = -\boldsymbol{v} \times \boldsymbol{B}.$$

The ECHO code for GRMHD Covariant and 3 + 1 formulations IMEX schemes for stiff relaxation equations Numerical tests

Stiff relaxation equations

System of hyperbolic ODEs + stiff relaxation equations:

$$\begin{aligned} \boldsymbol{X} &= \gamma^{1/2} \boldsymbol{E} : \quad \partial_t \boldsymbol{X} &= \boldsymbol{Q}_X(\boldsymbol{X}, \boldsymbol{Y}) + \boldsymbol{R}_X(\boldsymbol{X}, \boldsymbol{Y}) \\ \boldsymbol{Y} &= \gamma^{1/2} \boldsymbol{B} : \quad \partial_t \boldsymbol{Y} &= \boldsymbol{Q}_Y(\boldsymbol{X}, \boldsymbol{Y}) \end{aligned}$$

- $Q_{X,Y}$ = non stiff terms, evolving as $\sim \tau_h$
- \boldsymbol{R}_{X} = stiff terms $\propto \eta^{-1}$, evolving as $\sim \tau_{\eta} \ll \tau_{h}$

We need appropriate techniques to evolve the system, even for $\xi = 0$:

- Splitting methods (Komissarov, 2007; Takamoto & Inoue, 2011; Takahashi et al., 2013).
- Discontinuous Galerkin methods (Dumbser & Zanotti, 2009; Zanotti & Dumbser, 2011).
- Implicit-Explicit RK methods (Palenzuela et al., 2009; Bucciantini & Del Zanna, 2013; Palenzuela, 2013; Dionysopoulou et al., 2013; Del Zanna et al. / Bugli et al., 2014).

The ECHO code for GRMHD Covariant and 3 + 1 formulations IMEX schemes for stiff relaxation equations Numerical tests

High-order IMEX schemes

High-order time integration via IMEX Runge-Kutta methods with Strong Stability Preserving properties (Pareschi & Russo, 2005):

• Phase 1: Explicit integration

$$\begin{aligned} \boldsymbol{X}_{*}^{(i)} &= \boldsymbol{X}^{n} + \Delta t \sum_{j=1}^{i-1} \tilde{a}_{ij} \boldsymbol{Q}_{X}[\boldsymbol{X}^{(j)}, \boldsymbol{Y}^{(j)}] + \Delta t \sum_{j=1}^{i-1} a_{ij} \boldsymbol{R}_{X}[\boldsymbol{X}^{(j)}, \boldsymbol{Y}^{(j)}] \\ \boldsymbol{Y}_{*}^{(i)} &= \boldsymbol{Y}^{n} + \Delta t \sum_{j=1}^{i-1} \tilde{a}_{ij} \boldsymbol{Q}_{Y}[\boldsymbol{X}^{(j)}, \boldsymbol{Y}^{(j)}] \end{aligned}$$

• Phase 2: Implicit integration

$$X^{(i)} = X^{(i)}_* + a_{ii} \Delta t R_X[X^{(i)}, Y^{(i)}_*]$$

 $Y^{(i)} = Y^{(i)}_*$

• Phase 3: Final step

$$\begin{aligned} \boldsymbol{X}^{n+1} &= \boldsymbol{X}^n + \Delta t \sum_{i=1}^{\nu} \tilde{\omega}_i \boldsymbol{Q}_X[\boldsymbol{X}^{(i)}, \boldsymbol{Y}^{(i)}] + \Delta t \sum_{i=1}^{\nu} \omega_i \boldsymbol{R}_X[\boldsymbol{X}^{(i)}, \boldsymbol{Y}^{(i)}] \\ \boldsymbol{Y}^{n+1} &= \boldsymbol{Y}^n + \Delta t \sum_{i=1}^{\nu} \tilde{\omega}_i \boldsymbol{Q}_Y[\boldsymbol{X}^{(i)}, \boldsymbol{Y}^{(i)}] \end{aligned}$$

The ECHO code for GRMHD Covariant and 3 + 1 formulations IMEX schemes for stiff relaxation equations Numerical tests

Numerical tests: 1D current sheet

Diffusion equation:

$$p \gg B^2 \Rightarrow B^y(x,t) = B_0 \operatorname{erf}\left(\frac{x}{2\sqrt{\eta t}}\right); \quad [\eta = 0.01, t = 1, 10]$$

The ECHO code for GRMHD Covariant and 3 + 1 formulations IMEX schemes for stiff relaxation equations Numerical tests

Numerical tests: 1D dynamo

Exponentially growing dynamo modes:

$$B^{y}(x,t) = B_{0}\exp(\gamma t)\cos(kx), \quad \gamma = \frac{\sqrt{1+4\eta k(\xi-\eta k)}-1}{2\eta}$$

nitial equilibrium and set up Study of the Ω effect vs resistivity Study of the $\alpha - \Omega$ dynamo

Kinematic dynamo in accretion tori

Initial equilibrium and set up Study of the Ω effect vs resistivity Study of the $\alpha - \Omega$ dynamo

GRHD thick torus

Equilibrium: axisymmetric torus in Kerr metric and Boyer-Lindquist coordinates (Abramowicz et al., 1978; Font & Daigne, 2002).

Bernoulli equation for barotropic EOS $p \propto (\rho h)^{\kappa}$, differential rotation $\Omega = u^{\phi}/u_t$, constant specific angular momentum $l_0 = -u_{\phi}/u_t$:

$$W-W_{\mathrm{in}}+rac{\kappa}{\kappa-1}rac{p}{
ho h}=0, \hspace{1em} W=\ln|u_t|=rac{1}{2}\ln\left(rac{g_{t\phi}^2-g_{rr}g_{\phi\phi}}{g_{\phi\phi}+2g_{t\phi}l_0+g_{tt}l_0^2}
ight)$$

L. Del Zanna - Accretion and outflows throughout the scales, 2014, Lyon

A kinematic dynamo model for accretion disks around Kerr black holes

Initial equilibrium and set up Study of the Ω effect vs resistivity Study of the $\alpha - \Omega$ dynamo

Numerical set up

- Spatial interpolation: MPE5 + DER6.
- Time integration: IMEX-RK SSP3(4,3,3).
- Two-dimensional grid in (r, θ) .
- Maximally rotating Kerr BH (a = 0.99).
- Ideal, corotating atmosphere.
- Spatially varying ξ and η .
- Different choices of dynamo numbers:

$$m{\mathcal{C}}_{\xi} = rac{\xi m{\mathcal{R}}}{\eta} \geq m{1}, \qquad m{\mathcal{C}}_{\Omega} = rac{\Delta \Omega m{\mathcal{R}}^2}{\eta} \gg m{1}$$

Initial equilibrium and set up Study of the Ω effect vs resistivity Study of the $\alpha - \Omega$ dynamo

Initial seed magnetic field

- Initial seed magnetic field $B \sim 10^{-6}$ either toroidal or poloidal.
- Initial ideal electric field ($\boldsymbol{E} = -\boldsymbol{v} \times \boldsymbol{B}$).

Initial equilibrium and set up Study of the Ω effect vs resistivity Study of the $\alpha - \Omega$ dynamo

Study of the Ω effect vs resistivity

- No dynamo action ($\xi = 0$).
- Competition between ideal Ω effect and resistive η dissipation.
- Estimate of saturation toroidal field:

$$\Delta B \sim T \Delta \Omega | \boldsymbol{B}_{P} | \sim -T rac{\eta}{R^{2}} B \Rightarrow$$

$$m{B}_{sat} \sim rac{\Delta \Omega m{R}^2}{\eta} |m{B}_{m{P}}| \equiv m{C}_{\Omega} |m{B}_{m{P}}|$$

• Long-term runs ($P_c = 76.5$) confirm this $(\eta = 0, 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2})$.

Initial equilibrium and set up Study of the Ω effect vs resistivity Study of the $\alpha - \Omega$ dynamo

Evolution of the toroidal component

Initial equilibrium and set up Study of the Ω effect vs resistivity Study of the $\alpha - \Omega$ dynamo

Evolution of the poloidal components

Initial equilibrium and set up Study of the Ω effect vs resistivity Study of the $\alpha - \Omega$ dynamo

Growth rate and ratio $\boldsymbol{B}_P/\boldsymbol{B}_T$

Initial equilibrium and set up Study of the Ω effect vs resistivity Study of the $\alpha - \Omega$ dynamo

Butterfly diagram

Initial equilibrium and set up Study of the Ω effect vs resistivity Study of the $\alpha - \Omega$ dynamo

Migration reversal

The *solar analogy* is reproduced by choosing $\xi < 0 \Rightarrow \alpha_{dyn} > 0$:

Initial equilibrium and set up Study of the Ω effect vs resistivity Study of the $\alpha - \Omega$ dynamo

Summary of results

	$\boldsymbol{B}_{\mathrm{init}}$	C_{ξ}	\mathcal{C}_{Ω}	Growth Rate	Period	s _{max}	$(B_P)_{max}/(B_T)_{max}$
Model 1	B _T	5	400	0.30	10.34	2.90	0.12
Model 2	\boldsymbol{B}_T	-5	400	0.25	9.14	0.67	0.12
Model 3	B _T	25	400	1.26	3.31	2.42	0.36
Model 4	\boldsymbol{B}_T	1	400	0.06	33.14	3.18	0.04
Model 5	\boldsymbol{B}_T	5	80	0.37	6.63	3.11	0.17
Model 6	\boldsymbol{B}_T	5	2000	0.21	17.23	2.64	0.07
Model 7	B _P	5	400	0.30	10.34	2.95	0.12
Model 8	\boldsymbol{B}_P	25	400	1.26	3.31	2.36	0.36
Model 9	\boldsymbol{B}_P	1	400	0.06	34.47	3.13	0.04
Model 10	\boldsymbol{B}_P	-5	400	0.25	9.54	0.82	0.12

Conclusions Future work

Conclusions and future work

Conclusions

Summary of main results:

- resistivity and dynamo action in ECHO and X-ECHO with high-order IMEX schemes,
- first resistive GRMHD simulation of dynamo action in thick disks,
- exponential growth of toroidal and poloidal magnetic fields,
- timescale depends on microphysics, not on rotation period,
- migration of the fields towards/from the equator, in strong analogy with the Sun and with shearing box simulations.

Possible developments and applications:

- improvement in the model assumptions: dynamical regime and accretion, feedback (quenching) on η and ξ, different *M* and *a*,
- possible connections with phenomena with unexplained time periodicity scales: variable accretion? Periodic BZ activations?

Conclusions Future work

Future work

Beyond dynamo:

- A general ECHO code for relativistic dissipative plasmas in 3 + 1 GRMHD (resistivity, viscosity, heat conduction).
- High-order IMEX schemes for all stiff dissipative equations.
- Unification with the version for radiation RHD (Zanotti et al., 2011; Roedig et al., 2012).

Achievements so far:

- ECHO-QGP: viscous RHD for the Quark-Gluon Plasma in heavy-ion collisions (Del Zanna et al., 2013).
- Second-order Israel-Stewart theory applied (with relaxation equations).

Conclusions Future work

ECHO-QGP: viscous RHD for heavy-ion collisions

Conclusions Future work

Thank you!

L. Del Zanna - Accretion and outflows throughout the scales, 2014, Lyon A kinematic dynamo model for accretion disks around Kerr black holes