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Accretion Releases lots of Energy

An estimate of energy requirement for thermal processing from
chondritic material (King & Pringle 2010):

Ereq = 1.2× 1011
(

T

2000 K

)

erg g−1 (1)

Ekin = 1.5× 1012
(

M

M⊙

)(

3 AU

R

)

erg g−1 (2)

Demands about 8% efficiency at 3 AU.

Significant, but much looser constraint at smaller radii.
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Magnetic Fields

Expect disk dynamo to produce plasma beta ∼ 1− 50
Remnant magnetic field measurements indicate Gauss-level
magnetic fields were present when some chondrules cooled.

Fu et al. 2014: Semarkona, 0.54± 0.21 Gauss imprint from 723 K
to 1033 K
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Localized Heating and Chondrule Cooling

Chondrule radiative cooling timescale:

trad ∼ 10 s

Chondrule actual cooling timescale:

tcool ∼ 105 − 106 s

Orbital timescales:

torbit ∼ 107 s

To produce a cooling timescale in between radiative timescale, and
orbital timescales, one solution is to use localized heating in the
disk.
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A partial list of proposals for localized heating with magnetic
dissipation:

Sonnet 1978 heating from relativistic e− emitted from magnetic
reconnection

Levy & Araki 1988 magnetic reconnection in disk corona

Fleck 1990 magnetic reconnection in the disk midplane

King & Pringle 2010 rapid magnetic reconnection driving shocks
in the disk midplane

Hirose & Turner 2011 50% heated current sheets in active layer

Muranushi, Okuzumi & Inutsuka 2012 MRI-lightning ionization
avalanche

Hubbard et al. 2012 McNally et al. 2013, “Short-circuit” instability
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Questions

1 Can Ohmic dissipation dominate over shock-heating in
disk-like shear flow?

2 What do current sheets in MRI-turbulent disk-like shear flow
really look like close up?
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Magnetic Field Coupling Regimes

dead zone

collisional ionization at 

T > 103 K (r < 1 AU),

MRI turbulent

resistive quenching

of MRI, suppressed

angular momentum

transport MRI-active 

surface layer

non-thermal ionization

of full disk column 

cosmic

rays?

ambipolar diffusion

dominates

X-rays

Armitage 2011
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An Experiment

An Experiment with Current Sheets

Step back.
Ask a simple question in the simplest physical regime:

Optically Thick (Radiative diffusion)

Unstratified local model (Constant thermal relaxation time)

Net Vertical Field λMRI ∼ H

Constant Ohmic resistivity (Initial Elsasser number Λ0 = 0.5)

And then:

Use lots of resolution (remesh from 643 to 5123)

Use different numerical methods (Pencil & Athena)

What does the magnetic dissipation produce?
McNally, Hubbard, Mac Low, Yang, 2014
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Parameters

Box 1:1:1 - ( 0.3 AU, 0.3 AU, 0.3 AU ) = ( 4.85H, 4.85H, 4.85H )
Box 4:4:1 - ( 0.3 AU, 0.3 AU, 0.3 AU ) = ( 4.85H, 4.85H, 1.21H )

Parameter Value

ρ0 Initial density 10−9 g cm−3

T0 Background temperature 950 K

Lx Box size in x 0.3 AU

4.85H

Ω0 Orbital frequency 2π yr−1

r0 Shearing box position 1 AU

γ Gas adiabatic Index 1.5
m̄ Gas mean particle mass 2.33 amu

η Ohmic resistivity c2/4πσ 8.9 × 1014 cm2 s−1

5.2 × 10−3ΩH2

β0 Initial plasma beta 750

vA0 Initial Alfvén speed 9.5 × 103 cm s−1

5.2 × 10−2ΩH
Λ0 Initial Elsasser number 0.5

κ Rosseland mean opacity 20 cm2 g−1

τ0 Thermal relaxation time 1 yr

λMRI MRI fastest growing mode 5.7 × 10−2 AU

0.92H
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similar conclusion in MHD turbulence and w/ Prandtl number dependence: Brandenburg, ApJ 791, 12 (2014).
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Multiresolution analysis of J2 reveals convergence
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Spatial Intermittency of the Heating

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Volume

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
o
f

C
u

rr
e
n

t
H

e
a
ti

n
g
η
J
2 643

1283

2563

5123



Temperature Fluctuations and Current Sheets in Protoplanetary Disks

Magnetic Energy

An Experiment

Toy model
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Subconclusions

Caveats

Unstratified, zero net flux, optically thick approach is limited

Radially local approach cannot track the movement of the
edge of dead zone regime (Faure, Fromang, Latter 2014)

No variation of η and κ - should respond to thermal ionization
and grain destruction

Other Conclusions

Required ∼ 50 zones per scale height with Pencil (6th order in
space) to resolve current sheets even with maximal resistivity

Remelting of compact CAIs could occur in a regime like the
one modeled (Stolper & Paque 1986, Scott & Krot 2005)

Temperature fluctuations would broaden ice lines

if T ∝ R−1/2 then radial variation = 2× temperature variation
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Short Circuit Instability of Current Sheets

Short Circuit Instability - Hubbard et al. 2012

Ohmic
DissipationEnergy Equation:

Resistivity 
dependence
 on temperature:

Induction Equation:

Ohmic Dissipation 

Current Density
Increase

Temperature
Increase

Resistivity
Decrease

Feedback in the
Short-Circuit

Instability

Ionization
Increase

Ingredients in a Short-Circuit:
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Short Circuit Instability of Current Sheets

How Fast?

∂tB = ∇× (v ×B) + η∇2
B−∇(∇η ·B) + (B · ∇)∇η−(−∇η · ∇)B

−∇η behaves like an anti-diffusion

Thermal ionization of alkali metals (K, Na) has exponential T
dependence

in 1D runs, see −∇η ∼ 104 cm/s

(What about if η increases in the current sheet?)
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What limits the instability?

Presence of temperature gradient dependent on opacity, which is in
turn strongly temperature dependent. (D’Alessio 2001)
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Short Circuit Instability of Current Sheets

Not Limited by Cooling McNally et al. 2013
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Limited by Cooling (silicate grain destruction) McNally et al. 2013
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Conclusions

Current sheets can drive significant (order-unity) temperature
fluctuations in protoplanetary disks (optically thick region).

The local variations of conductivities and opacities can both
enhance and limit the heating in current sheets.

Fluctuations can be large enough that they ought to have
consequences for thermal processing of solids.

Functional dependence and form of η and κ can be critical.

Wishlist:

Zero net flux current sheet study

Stratified current sheet study

Track particles though the current sheets

Follow current sheets later in time
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