Variable accretion with episodic bursts

author: Eduard Vorobyov

affiliation: Department of Astrophysics, University of Vienna, Vienna, Austria and Research Institute of Physics, Southern Federal University, Rostov-on-Don, Russia Co-authors: Shantanu Basu, Michael Dunham, Isabelle Baraffe, Gilles Chabrier

1.Failure of the classic spherical accretion models (e.g. Shu 1977)

2. Variable accretion with episodic bursts - a new paradigm?

3. Accretion in gravitationally unstable disks.

Five main stages of low-mass star formation

Most of the stellar mass is accreted during a short-lived embedded phase, we know this for sure

But we do not know the past accretion history ... Accretion rates were constant? Declining? Time-varying?

Stellar evolution, disk dynamics and chemistry, dust and ice composition may depend on the past accretion history!

Planet formation phase

5

~ 0.1 pc

B

Mass accretion rates

Mass accretion rate onto the star in the standard model of spherical collapse (Shu 1977)

Key features of young star-forming regions: wide spread in accretion rates $(\sim 3 \text{ orders of magnitude})$

Variable accretion with episodic bursts

Infalling material from a collapsing core accumulates in a protostellar disk and is driven onto a protostar in a series of short-lived (<100-200 yr) accretion bursts. The quiescent periods between the bursts (10^3-10^4 yr) are characterized by low-rate accretion.

modified from Hartmann & Kenyon,1996 Mass Accretion Rate (solar masses/yr)

FU Orionis eruptions

1937 – was 16th mag star, but increased by over 6 mag (factor of ~ 250 in luminosity) in one year. Currently flickering around 9.5 mag

A sharp increase in luminosity of FUors is thought to be caused by accretion bursts

Variable accretion with episodic bursts. A new paradigm?

Several mechanisms that can produce episodic bursts include:

- viscous-thermal instabilities in the inner disk (Lin & Papaloizou 1986),
- thermal instabilities induced by density perturbations due to a massive planet in the disk (Lodato & Clarke 2004),
- tidal effects from close encounters in binary systems or stellar clusters (Bonnell & Bastien1992; Reipurth & Asprin 2004; Pfalzner et al. 2008).
- combination of gravitational instability and the triggering of the magnetorotational instability (Armitage et al. 2001; Zhu et al. 2010)
- accretion of dense gaseous clumps in a gravitationally fragmenting disk (Vorobyov & Basu 2005, 2006, 2010; Machida et al. 2011)

Gravitational fragmentation and inward migration of fragments onto the protostar

(Vorobyov & Basu 2005, ApJL; Vorobyov & Basu 2006, 2010, ApJ)

Gravitational fragmentation of protostellar disks

Stamatellos & Whitworth (2009 MNRAS)

Various numerical and theoretical studies¹ of protostellar disks have shown that under favorable initial configurations and in the absence of magnetic fields, disk fragmentation is a robust phenomenon.

Prerequisites for disk fragmentation:

- relatively massive disks (> 10% that of the star)
- sufficiently large size (> 50 AU)
- sufficiently fast disk cooling ($\Omega * t_{cool} < 3 5$)

References : Stamatellos, Whitworth, Kroupa, Inutsuka, Gammie, Bate, Boss, Machida, Zhu, Durisen, Nayakshin, Mayer, Wadsley, Kratter, Krumholz, Klein, Hayfield, Lodato, Clarke, Goodwin, Thies, Vorobyov, Basu and many others)

Major question: fragments can form in the disk, but can they survive?

Inward vigration of fragments in protostellar disks

 $\Gamma_{in} = \mathbf{r} \times \mathbf{F}_{in} > 0$ $\Gamma_{out} = \mathbf{r} \times \mathbf{F}_{out} < 0$

Fragments may stay at quasistable orbits for as long as $\Gamma_{in} > abs(\Gamma_{out})$

In the embedded phase this inequality almost always breaks due to 1)continuing disk growth via accretion from the infalling envelope. 2)sub-Keplerian velocity of the accreted material

Key result: most fragments forming in the disk migrate onto the star

Migration of fragments onto the protostar and the burst mode of accretion

Initial core mass = 1.0 M_{sun}

Face-on view of the disk Black regions – infalling envelope (off scale)

Mass accretion rate at 5 AU $10^{-5}~\text{M}_{\odot}$ / year

Vorobyov & Basu (2006, 2010)

Migrating fragments in full 3D simulations

Full 3D numerical hydrodynamics simulations starting from pre-stellar cores but limited in time scope ($\leq 10^5$ yr)

Machida, Inutsuka, Matsumoto 2011, ApJ, 729, 42

See also Zhu et al. (2012)

Model of an accreting protostar and protostellar disk

Numerical hydrodynamics equations in the thin-disk approximation (r,ϕ)

complementary equations

Accretion and infall rates in models with different core masses

How significant are the bursts?

FUors are **rarely** seen... but they are **common** events!

Within 1 kpc of the Sun:

- 8 FUors since 1936 → Fuors frequency is 0.1 yr⁻¹
 Average star formation rate 0.02 yr⁻¹ (Miller &Scalo 1979,
- Average star formation rate 0.02 yr⁻¹ (Miller &Scalo 1979, ApJS, 41, 513)
- FUors occur at several times the rate of star formation; implying multiple bursts per star

Adopted from PPVI presentation "Episodic accretion in young stars"

Properties of the bursts

Base luminosity – photospheric luminosity plus accretion luminosity with dot{M} $\leq 10^{-6}$ M_{\odot} yr⁻¹

Core mass	N _{burst} (4 mag cutoff)	Accreted mass (relative to total mass)	Time spent in bursts (relative to total time)	N _{burst} (3 mag cutoff)	Accreted mass (relative to total mass)	Time spent in bursts (relative to total time)
0.3 Msun	0	0	0	2	0.8%	0.026%
1.1 Msun	5	2.4%	0.016%	17	7.4%	0.12%
1.5 Msun	9	16%	0.36%	20	25%	2.6%

The effect of magnetic field

Ideal MHD plus a toy model for magnetic braking

$$\dot{L}_{\rm mb} = \frac{\Sigma r^2 \left(\Omega(r) - \Omega_{\rm c}(r) \right)}{t_{\rm mb}}, \label{eq:Lmb}$$

The rate of loss of angular momentum via magnetic braking

$$t_{\rm mb} = \frac{R_{\rm c}}{v_{\rm A}},$$

Characteristic time of magnetic braking

Implications of variable accretion

Baraffe et al. 2009, 2012; Baraffe & Chabrier 2010; Vorobyov et al. 2013, Stamatellos et al. 2012; Dunham & Vorobyov 2012; Km et al. 2012

3D view on the burst phenomenon

Key results for the disk instability model

- Accretion rates at several AU appear to be intrinsically variable in the embedded phase of disk evolution thanks to disk gravitational instability and fragmentation.
- When the disk fragments, most of the fragments are torqued onto the star via gravitational interaction with spiral arms, producing strong luminosity outbursts.
- The luminosity outbursts can have significant impact on both the host star and the disk/envelope

Open questions:

- Can magnetic fields kill accretion variability and bursts once and for all?
- How does variable accretion affect the properties of the stars (internal structure, spin, cold vs. hot accretion)?
- How does variable accretion affect the jets/outflows (knots)?
- Is the fragment migration mechanism universal for astrophysical disks?

Numerical simulations have been performed on the VSC-2, SHARCNET and ACEnet clusters

