Pair Cascades in the Disk Environment of the Binary System PSR B1259-63/LS 2883

Iurii Sushch 1, 2, @, Markus Böttcher 1, 3, @

1: Centre for Space Research, North-West University (NWU) - Website

Potchefstroom 2520 - South Africa

2: Astronomical Observatory of Ivan Franko National University of L'viv

vul. Kyryla i Methodia, 8, L'viv 79005 - Ukraine

3: Astrophysical Institute, Department of Physics and Astronomy, Ohio University

Athens, OH 45701 - United States

PSR B1259-63/LS 2883 is a very high energy (VHE; E > 100 GeV) γ -ray emitting binary consisting of a 48 ms pulsar orbitting around a Be star with a period of ~ 3.4 years. The Be star features a circumstellar disk which is inclined with respect to the orbit in such a way that the pulsar crosses it twice every orbit. The circumstellar disk provides an additional field of target photons which may contribute to inverse Compton scattering and gamma-gamma absorption, leaving a characteristic imprint in the observed spectrum and light curve of the high energy emission. We study the signatures of Compton-supported, VHE gamma-ray induced pair cascades in the circumstellar disk of the Be star and their possible contribution to the GeV flux. We also study a possible impact of the gamma-gamma absorption in the disk on the observed TeV light curve.

Subject :	:	oral
Topics	:	Astrophysics

® YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

Pair Cascades in the Disk Environment of PSR B1259-63/LS 2883

Iurii Sushch & Markus Böttcher North-West University

Accretion and Outflows, Lyon, October 2, 2014

PSR B1259-63/LS 2883

PSR B1259-63

- P = 48 ms
- $L_{SD} = 8 \times 10^{35} \text{ erg/s}$
- $t_c = 3.3 \times 10^5$ years
- $P_{orb} = 3.4$ years
- Eccentricity = 0.87

LS 2883

- Be star
- Circumstellar disk
- $L_{star} = 2.3 \times 10^{38} \text{ erg/s}$
- T = 27500 30000 K
- M ≈ 31 M_{sun}
- $R = 8.1 9.7 R_{sun}$
- D = 2.3 kpc

PSR B1259-63/LS 2883: unpulsed emission

Radio pulsed emission disappears as the pulsar goes behind the disk

PSR B1259-63/LS 2883: unpulsed emission

Radio pulsed emission disappears as the pulsar goes behind the disk

The unpulsed emission from the system is enhanced when the pulsar interacts with the circumstellar disk

Across the spectrum

Chernyakova et al., 2014

Across the spectrum

Chernyakova et al., 2014

Weak emission close to the periastron

Spectacular flare 30 days after the periastron

GeV flare displaced with
 respect to the post-periastron
 peak at other energies

 No counterpart at other energies

Abdo et al. 2011

Weak emission close to the periastron

Spectacular flare 30 days after the periastron

GeV flare displaced with
 respect to the post-periastron
 peak at other energies

 No counterpart at other energies

Several possible explanations:

- IC scattering of stellar and disk photons by unshocked pulsar wind
- Doppler boosting
- IC scattering of X-ray photons

Abdo et al. 2011

 $\circ~$ Khangulyan et al. 2012

2011

 $\nabla = \nabla$

100

• Problems:

- Can disk provide a sufficient radiation field for the observed GeV flux?
- Time delay between the GeV flare and reappearance of the pulsed radio emission

Days from periastron

Several possible explanations:

- IC scattering of stellar and disk photons by unshocked pulsar wind
- Doppler boosting
- IC scattering of X-ray photons

Abdo et al. 2011

ᡑᡰᠼᠯᢦ

100

• Bogovalov et al. 2008, Dubus et al. 2010, Kong et al. 2012

 Problem: should affect the emission in all energy bands, but no counterparts at other energies detected

2.5

<u>7</u> 2.0

 Kong et al. 2012 tried to explain this by specific anisotropy of the pulsar wind with different emission behaviors in different regions of the termination shock

Days from periastron

Several possible explanations:

- IC scattering of stellar and disk photons by unshocked pulsar wind
- Doppler boosting
- IC scattering of X-ray photons

- Dubus & Cerutti 2013
- Light curve naturally peaks after periastron as the cone of shocked material passes though the line of sight.
- Problem: doesn't explain the delay of the GeV
 flare and post-periastron X-ray peak

energies

Several possible explanations:

IC scattering of stellar and disk photons by unshocked pulsar wind

2.0

1.5

-100

-50

2.5

- Doppler boosting
- IC scattering of X-ray photons

In leptonic scenario one expects:

- Peak at periastron when the separation distance is minimal
- Smooth dependence in the case of the saturation regime

In leptonic scenario one expects:

- Peak at periastron when the separation distance is minimal
- Smooth dependence in the case of the saturation regime

Kerschhaggl, 2011

Orbital dependent adiabatic losses?

TeV light curve supports hadronic scenario:

- Two sharp peaks which correspond to the disk crossings
- Secondary leptons can re-emit via IC and synchrotron at radio and X-ray energies

But:

Geometry of the disk recovered from radio observations is different from the one required for hadronic scenario

Gamma-gamma absorption?

Dubus, 2006

Pair Cascades in Binaries LS 5039 case

Explains the flux at superior conjunction

Violates Fermi upper limits

Cerutti et al., 2010

Cascades in the disk of PSR B1259-63. Model assumptions

 $\eta = L/(\dot{M}_* c \upsilon_*)$

• Point source assumption

$$\rho = d \frac{\sqrt{\eta}}{(1 + \sqrt{\eta})},$$

- $\circ~$ Spherically symmetrical emission
- We consider a mono-directional beam of photons to isolate geometrical effects
- Spectrum follows a power-law with an exponential cut-off photon spectral index = 1.5, cut-off energy = 1 TeV
- $\odot~$ Toroidal magnetic field. B ~ 1 G. We consider the range 10⁻²-10 G.

$$B(r) \approx B_{\rm S} \begin{cases} \left(\frac{R_*}{r}\right)^3, & R_* \leq r < R_{\rm A}, \\ \frac{R_*^3}{R_{\rm A}r^2}, & R_{\rm A} < r < R_{\rm tor}, \\ \frac{\nu_{\rm rot}}{\nu_{\infty}} \frac{R_*^2}{R_{\rm A}r}, & R_{\rm tor} < r, \end{cases}$$

$$R_{tor} \approx 3 R_{*}$$

 $r_{per} = 23 R_{*} >> R_{tor}$
 $r_{d} = 45 R_{*} >> R_{tor}$

 $\eta \approx 10^{-5} - 10^{-3}$

 $\rho \approx (10^{-3} - 10^{-2}) d$

Usov&Melorse, 1992

Cascades in the disk of PSR B1259-63. Disk model

- Substitute a disk by the cuboid with sides
 0.5·10¹³ cm X 10¹³ cm X 0.1·10¹³ cm
 (inclination of the disk 10°, opening angle 1°)
- Disk photons are isotropized
- Blackbody distribution

$$u_{\rm d}(v, \mathbf{r}, \mathbf{\Omega}) = \begin{cases} \frac{2hv^3}{c^3} \frac{A}{\exp(\frac{hv}{kT}) - 1} \\ 0 & \text{outside} \end{cases}$$
$$u_{\rm d} = 4\pi \int_0^\infty u_{\rm d}(v, \mathbf{r}, \mathbf{\Omega}) dv.$$

- Constrains on the energy density in the disk
 - Energy density of the stellar photons
 - Total star luminosity

 $0.7 \,\mathrm{erg}\,\mathrm{cm}^{-3} < u_{\mathrm{d}} < 200 \,\mathrm{erg}\,\mathrm{cm}^{-3}$

- \circ T_{disk} = 0.6 T_{star} = 18000 K
- Magnetic field in the xy-plane

Cascades in the disk of PSR B1259-63. Disk model

- Substitute a disk by the cuboid with sides
 0.5·10¹³ cm X 10¹³ cm X 0.1·10¹³ cm
 (inclination of the disk 10°, opening angle 1°)
- Disk photons are isotropized
- Blackbody distribution

$$u_{\rm d}(v, \mathbf{r}, \mathbf{\Omega}) = \begin{cases} \frac{2hv^3}{c^3} \frac{A}{\exp(\frac{hv}{kT}) - 1} & \text{inside} \\ 0 & \text{outside} \end{cases}$$
$$u_{\rm d} = 4\pi \int_0^\infty u_{\rm d}(v, \mathbf{r}, \mathbf{\Omega}) dv.$$

Monte Carlo simulations:

- pair production
- deflection by magnetic field
- inverse Compton scattering
- Synchrotron losses
 - Magnetic field in the xy-plane

Cascade emission

 $u_{d} = 200 \text{ erg/cm}^{3}$ $B_{x} = 0.01 \text{ G}, B_{y} = 0.001 \text{ G}$ $\mu = \cos \theta$

Cascade emission

 $u_{d} = 200 \text{ erg/cm}^{3}$ $B_{x} = 0.01 \text{ G}, B_{y} = 0.001 \text{ G}$ $\mu = \cos \theta$

Dependence on the energy density

Dependence on the energy density

Depedence on B-field strength

A = 0.05, u_{ext} = 40 erg/cm³

Depedence on B-field strength

A = 0.05, u_{ext} = 40 erg/cm³

Depedence on B-field strength

A = 0.05, u_{ext} = 40 erg/cm³

Depedence on B-field orientation

A = 0.05, $u_d = 40 \text{ erg/cm}^3$ $\beta = B_x/B_v$, B = 0.01 G

Depedence on B-field orientation

A = 0.05, $u_d = 40 \text{ erg/cm}^3$ $\beta = B_x/B_y$, B = 0.01 G

Location dependence

A = 0.05, $u_d = 40 \text{ erg/cm}^3$

 $\beta = 0.1$, B = 0.01 G

Generation of the observed GeV emission?

- $\circ~$ GeV flare is not a result of pair cascades because
 - Cascade contribution is small
 - Cascade emission in forward direction violates limits
 - The same flare should have been observed before periastron

Generation of the observed GeV emission?

- GeV flare is not a result of pair cascades because
 - Cascade contribution is small
 - Cascade emission in forward direction violates limits
 - The same flare should have been observed before periastron
- Responsible for the GeV emission around periastron?

GeV emission at periastron

- $\odot~$ Forward direction cascade emission into a cone with an opening angle of 11 $^{\circ}$ (0.98 < μ < 1)
- Magnetic field aligned with the direction towards observer

u_d = 20 erg/cm³ B = 0.1 G

GeV emission at periastron

But

- Stellar photons should be taken into account
- Proper structure of the magnetic field should considered

GeV emission at periastron

dN dE [erg cm⁻² s⁻

ъ

10⁻¹⁰

- Stellar photons should be taken into account
- \circ Proper structure of the magnetic field should considered

Anyway, new observations around 2014 periastron passage don't seem to show any significant GeV emission close to periastron (ATel #6198)

g/cm³

B = 0.1 G

- Upper limits about 3 times lower than the observed flux in 2010
- Both analyses from 2010 are wrong?
- Periastron-to-periastron variability?

Dubus, 2006

Same geometry and stellar parameters as in *Dubus 2006* Constant width (10¹² cm) and energy density (8 erg/cm³) of the disk → highest density for which Fermi ULs are not violated

Summary

 Emission generated by pair cascades cannot be responsible for the GeV flare.

- Fermi ULs constrain the photon energy density in the disk
- Pair cascades might be responsible for the GeV emission at periastron, if there is one.
- Gamma-gamma absorption in the disk might explain the observed TeV light curve.