Pair Cascades in the Disk Environment of the Binary System
PSR B1259-63/LS 2883

Iurii Sushch 1, 2, @ , Markus Böttcher 1, 3, @

1 : Centre for Space Research, North-West University (NWU) - Website
Potchefstroom 2520 - South Africa

2 : Astronomical Observatory of Ivan Franko National University of L’viv
vul. Kyryla i Methodia, 8, L’viv 79005 - Ukraine

3 : Astrophysical Institute, Department of Physics and Astronomy, Ohio University
Athens, OH 45701 - United States

PSR B1259-63/LS 2883 is a very high energy (VHE; E > 100 GeV) γ-ray emitting binary consisting of a 48 ms pulsar orbitting around a Be star with a period of ~ 3.4 years. The Be star features a circumstellar disk which is inclined with respect to the orbit in such a way that the pulsar crosses it twice every orbit. The circumstellar disk provides an additional field of target photons which may contribute to inverse Compton scattering and gamma-gamma absorption, leaving a characteristic imprint in the observed spectrum and light curve of the high energy emission. We study the signatures of Compton-supported, VHE gamma-ray induced pair cascades in the circumstellar disc of the Be star and their possible contribution to the GeV flux. We also study a possible impact of the gamma-gamma absorption in the disk on the observed TeV light curve.

Subject : oral
Topics : Astrophysics
Pair Cascades in the Disk Environment of PSR B1259-63/LS 2883

Iurii Sushch & Markus Böttcher
North-West University

Accretion and Outflows, Lyon, October 2, 2014
PSR B1259-63/LS 2883

PSR B1259-63
- $P = 48$ ms
- $L_{SD} = 8 \times 10^{35}$ erg/s
- $t_c = 3.3 \times 10^5$ years
- $P_{orb} = 3.4$ years
- Eccentricity = 0.87

LS 2883
- Be star
- Circumstellar disk
- $L_{star} = 2.3 \times 10^{38}$ erg/s
- $T = 27500 - 30000$ K
- $M \approx 31 M_{\odot}$
- $R = 8.1 - 9.7 R_{\odot}$
- $D = 2.3$ kpc

Johnston et al. 1999
Radio pulsed emission disappears as the pulsar goes behind the disk.
PSR B1259-63/LS 2883: unpulsed emission

Radio pulsed emission disappears as the pulsar goes behind the disk.

The unpulsed emission from the system is enhanced when the pulsar interacts with the circumstellar disk.

Johnston et al. 1999
Across the spectrum

Chernyakova et al., 2014
Across the spectrum

Chernyakova et al., 2014
GeV Emission

- Weak emission close to the periastron
- Spectacular flare 30 days after the periastron
- GeV flare displaced with respect to the post-periastron peak at other energies
- No counterpart at other energies

Abdo et al. 2011
GeV Emission

- Weak emission close to the periastron
- Spectacular flare 30 days after the periastron
- GeV flare displaced with respect to the post-periastron peak at other energies
- No counterpart at other energies

Several possible explanations:
- IC scattering of stellar and disk photons by unshocked pulsar wind
- Doppler boosting
- IC scattering of X-ray photons
GeV Emission

- Abdo et al. 2011
 - Weak emission close to the periastron
 - Spectacular flare 30 days after the periastron
 - GeV flare displaced with respect to the post-periastron peak at other energies
 - No counterpart at other energies

Several possible explanations:
- **IC scattering of stellar and disk photons by unshocked pulsar wind**
- Doppler boosting
- IC scattering of X-ray photons

Problems:
- Can disk provide a sufficient radiation field for the observed GeV flux?
- Time delay between the GeV flare and reappearance of the pulsed radio emission

Khangulyan et al. 2012
GeV Emission

- Weak emission close to the periastron

- **Bogovalov et al. 2008, Dubus et al. 2010, Kong et al. 2012**
- Problem: should affect the emission in all energy bands, but no counterparts at other energies detected
- **Kong et al. 2012** tried to explain this by specific anisotropy of the pulsar wind with different emission behaviors in different regions of the termination shock

Several possible explanations:
- IC scattering of stellar and disk photons by unshocked pulsar wind
- **Doppler boosting**
- IC scattering of X-ray photons
GeV Emission

- Weak emission close to the periastron
 - Dubus & Cerutti 2013
 - Light curve naturally peaks after periastron as the cone of shocked material passes though the line of sight.
 - Problem: doesn't explain the delay of the GeV flare and post-periastron X-ray peak

Several possible explanations:
- IC scattering of stellar and disk photons by unshocked pulsar wind
- Doppler boosting
 - **IC scattering of X-ray photons**
In leptonic scenario one expects:

- Peak at periastron when the separation distance is minimal
- Smooth dependence in the case of the saturation regime
In leptonic scenario one expects:

- Peak at periastron when the separation distance is minimal
- Smooth dependence in the case of the saturation regime

Orbital dependent adiabatic losses?

Kerschhaggl, 2011
TeV Light Curve

TeV light curve supports hadronic scenario:

- Two sharp peaks which correspond to the disk crossings
- Secondary leptons can re-emit via IC and synchrotron at radio and X-ray energies

But:
Geometry of the disk recovered from radio observations is different from the one required for hadronic scenario
TeV Light Curve

Gamma-gamma absorption?

Dubus, 2006
Pair Cascades in Binaries
LS 5039 case

Expects the flux at superior conjunction

Violates Fermi upper limits

Cerutti et al., 2010
Cascades in the disk of PSR B1259-63.

Model assumptions

- Point source assumption
- Spherically symmetrical emission
- We consider a mono-directional beam of photons to isolate geometrical effects
- Spectrum follows a power-law with an exponential cut-off photon spectral index $= 1.5$, cut-off energy $= 1$ TeV
- Toroidal magnetic field. $B \sim 1$ G. We consider the range 10^{-2}-10 G.

\[\eta = \frac{L}{(\dot{M}_* c u_*)} \]
\[\rho = d \frac{\sqrt{\eta}}{(1 + \sqrt{\eta})}, \]
\[\eta \approx 10^{-5} - 10^{-3} \]
\[\rho \approx (10^{-3} - 10^{-2}) d \]

\[B(r) \approx B_S \begin{cases} \left(\frac{R_*}{r} \right)^3, & R_* \leq r < R_A, \\ \frac{R_*^3}{R_A r^2}, & R_A < r < R_{\text{tor}}, \\ \frac{u_{\text{rot}}}{u_\infty} \frac{R_*^2}{R_A r}, & R_{\text{tor}} < r, \end{cases} \]

\[R_{\text{tor}} \approx 3 R_* \]
\[r_{\text{per}} = 23 R_* \gg R_{\text{tor}} \]
\[r_d = 45 R_* \gg R_{\text{tor}} \]

Usov&Melrose, 1992
Cascades in the disk of PSR B1259-63.

Disk model

- Substitute a disk by the cuboid with sides $0.5 \cdot 10^{13}$ cm $\times 10^{13}$ cm $\times 0.1 \cdot 10^{13}$ cm (inclination of the disk 10°, opening angle 1°)
- Disk photons are isotropized
- Blackbody distribution

\[
U_d(v, r, \Omega) = \begin{cases}
\frac{2hv^3}{c^3} \frac{A}{\exp\left(\frac{hv}{kT} \right) - 1} & \text{inside} \\
0 & \text{outside}
\end{cases}
\]

\[
U_d = 4\pi \int_0^{\infty} U_d(v, r, \Omega) dv.
\]

- Constraining on the energy density in the disk
 - Energy density of the stellar photons
 - Total star luminosity

\[
0.7 \text{ erg cm}^{-3} < u_d < 200 \text{ erg cm}^{-3}
\]

- $T_{\text{disk}} = 0.6 \ T_{\text{star}} = 18000$ K
- Magnetic field in the xy-plane
Cascades in the disk of PSR B1259-63.

Disk model

- Substitute a disk by the cuboid with sides $0.5 \times 10^{13} \text{ cm} \times 10^{13} \text{ cm} \times 0.1 \times 10^{13} \text{ cm}$ (inclination of the disk 10°, opening angle 1°)
- Disk photons are isotropized
- Blackbody distribution

$$u_d(\nu, \mathbf{r}, \Omega) = \begin{cases} \frac{2h\nu^3}{c^3} \frac{A}{\exp(h\nu/kT) - 1} & \text{inside} \\ 0 & \text{outside} \end{cases}$$

$$u_d = 4\pi \int_0^\infty u_d(\nu, \mathbf{r}, \Omega) d\nu.$$

Monte Carlo simulations:
- pair production
- deflection by magnetic field
- inverse Compton scattering
- Synchrotron losses

- Magnetic field in the xy-plane
Cascade emission

\[u_d = 200 \text{ erg/cm}^3 \]
\[B_x = 0.01 \text{ G}, \ B_y = 0.001 \text{ G} \]
\[\mu = \cos \theta \]
Cascade emission

\[u_d = 200 \text{ erg/cm}^3 \]
\[B_x = 0.01 \text{ G} \]
\[B_y = 0.001 \text{ G} \]
\[\mu = \cos \theta \]
Dependence on the energy density

$A = 1 \Rightarrow u_d = 800 \text{ erg/cm}^3$

$B_x = 0.01 \text{ G, } B_y = 0.001 \text{ G}$
Dependence on the energy density

$A = 1 \Rightarrow u_d = 800 \text{ erg/cm}^3$

$B_x = 0.01 \text{ G}, B_y = 0.001 \text{ G}$

$A \leq 0.01$

to satisfy Fermi ULs
Depedence on B-field strength

\[A = 0.05, \ u_{\text{ext}} = 40 \ \text{erg/cm}^3 \]
Depedence on B-field strength

\[A = 0.05, \ u_{\text{ext}} = 40 \ \text{erg/cm}^3 \]

For \(B > 0.01 \ \text{G} \),
Cascade emission is fully isotropised
Dependence on B-field strength

\[A = 0.05, \ u_{\text{ext}} = 40 \ \text{erg/cm}^3 \]

- For \(B \geq 10 \ \text{G} \), synchrotron losses are substantial.
- For \(B > 0.01 \ \text{G} \), cascade emission is fully isotropised.
Depedence on B-field orientation

$A = 0.05, u_d = 40 \text{ erg/cm}^3$

$\beta = \frac{B_x}{B_y}, B = 0.01 \text{ G}$
Depedence on B-field orientation

\[A = 0.05, \quad u_d = 40 \text{ erg/cm}^3 \]
\[\beta = B_x / B_y, \quad B = 0.01 \text{ G} \]

For small \(\beta \) the peak of the non-frontal cascade emission moves to lower energies, but the emission also gets lower, since most of it is emitted in the frontal direction.
Location dependence

\[A = 0.05, \ u_d = 40 \text{ erg/cm}^3, \ \beta = 0.1, \ B = 0.01 \text{ G} \]
Generation of the observed GeV emission?

- GeV flare is not a result of pair cascades because
 - Cascade contribution is small
 - Cascade emission in forward direction violates limits
 - The same flare should have been observed before periastron
Generation of the observed GeV emission?

- GeV flare is not a result of pair cascades because
 - Cascade contribution is small
 - Cascade emission in forward direction violates limits
 - The same flare should have been observed before periastron

- Responsible for the GeV emission around periastron?

Abdo et al. 2011
Tam et al. 2011
GeV emission at periastron

- Forward direction cascade emission into a cone with an opening angle of 11° ($0.98 < \mu < 1$)
- Magnetic field aligned with the direction towards observer

$u_d = 20 \text{ erg/cm}^3$
$B = 0.1 \text{ G}$
GeV emission at periastron

But
- Stellar photons should be taken into account
- Proper structure of the magnetic field should be considered
GeV emission at periastron

But
- Stellar photons should be taken into account
- Proper structure of the magnetic field should be considered

Anyway, new observations around 2014 periastron passage don't seem to show any significant GeV emission close to periastron (ATel #6198)
- Upper limits about 3 times lower than the observed flux in 2010
- Both analyses from 2010 are wrong?
- Periastron-to-periastron variability?
TeV Light Curve

Dubus, 2006
Same geometry and stellar parameters as in Dubus 2006
Constant width (10^{12} cm) and energy density (8 erg/cm3) of the disk
→ highest density for which Fermi ULs are not violated
Summary

- Emission generated by pair cascades cannot be responsible for the GeV flare.
- Fermi ULs constrain the photon energy density in the disk.
- Pair cascades might be responsible for the GeV emission at periastron, if there is one.
- Gamma-gamma absorption in the disk might explain the observed TeV light curve.