Transonic solutions of isothermal galactic outflows in gravitational potential of a dark matter halo and a super massive black hole

Asuka Igarashi 1, *, @, Masao Mori 1, @, Shin-Ya Nitta 2, @

1 : University of Tsukuba
 1-1-1, Tennodai, Tsukuba-city, Ibaraki, 305-8577 - Japan

2 : Tsukuba University of Technology
 4-3-15, Amakubo, Tsukuba-city, Ibaraki, 305-8520 - Japan

*: Corresponding author

We present fundamental properties of transonic galactic outflows in gravitational potential of a dark matter halo and a super-massive black hole assuming isothermal, steady and spherically symmetric state (Igarashi et al. 2014, arXiv:1405.3432). Transonic solutions of galactic outflows are classified according to the perspective of their topological features. We found that there are mainly two types of transonic solutions characterized by different locus of the transonic point; one transonic point is formed at a central region (<0.01kpc), and another is at a very distant region (>100kpc). Because these two transonic solutions have substantially different mass fluxes and starting points, these solutions may have different influences on the evolution of galaxies and the release of metals into intergalactic space.

We have applied our model to the Sombrero galaxy and obtained a new type of the galactic outflow: a slowly accelerated transonic outflow through the transonic point at very distant region (126kpc). In this galaxy, previous works reported that although the trace of the galactic outflow is observed by X-ray, the gas density distribution is consistent with the hydrostatic state. We have clarified that the slowly accelerating outflow has a gas density profile quite similar to that of the hydrostatic solution in the widely spread subsonic region. Thus, it is difficult to distinguish the wide subsonic region from hydrostatic state. Such galactic outflows in quiescent galaxies with inactive star formation are different from the conventional supersonic outflows observed in star-forming galaxies.

Subject : oral
Topics : Astrophysics
Transonic Solutions of Isothermal Galactic Outflows in Gravitational Potential of a Dark Matter Halo and a Super Massive Black Hole

Igarashi, Asuka (University of Tsukuba)
Mori, Masao (University of Tsukuba)
Nitta, Shin-ya (Tsukuba University of Technology)

2 October 2014
Galactic Outflows

- consist of interstellar medium (hot gas) from galaxies.
- are ubiquitous at high-redshift galaxies (Weiner et al. 2009).
- influence to evolution of galaxies.
- carry heavy elements to intergalactic space.

Galactic outflows strongly depend on the mass distribution.
Mass distribution plays an essential role to form transonic solution.
Transonic Outflow with Point Mass
(Parker 1958)

- isothermal, steady and spherically symmetric model

Mass conservation

\[4\pi \rho vr^2 = \text{const.} \]

Momentum conservation

\[v \frac{dv}{dr} = -\frac{c_s^2}{\rho} \frac{d\rho}{dr} - \frac{d\Phi(r)}{dr} \]

\[dM^2 = \frac{4 - 2\frac{d\Phi}{dx}}{x \frac{c_s^2}{dx}} \]

\[\Phi(x) \propto -\frac{1}{x} \]

\[X : \text{normalized distance} \]
\[M : \text{Mach number} \]

\[\text{Transonic point} \]
\[\text{Entropy-maximum} \]

\[\text{Transonic outflow} \]

\[\text{Subsonic outflow} \]

Gas density in subsonic region is hydrostatic-like.
Transonic Outflow with Dark Matter Halo
(Tsuchiya et al. 2013)

Basic equations

\[4\pi \rho v r^2 = \text{const.} \]

\[\frac{dV}{dr} = -\frac{c_s^2}{\rho} \frac{d\rho}{dr} - \frac{d\Phi(r)}{dr} \]

\[\frac{dM^2}{dx} = \frac{4}{x} - \frac{2}{c_s^2} \frac{d\Phi}{dx} \]

\[\Phi(x) \propto -\frac{\log(x+1)}{x} \]

\[X : \text{normalized distance} \]
\[M : \text{Mach number} \]

Dark matter halo mass distribution

\[\rho_{DMH} = \frac{\rho_d r_d^3}{r(r+r_d)^2} \]

predicted by cosmological N-body simulations (NFW model [Navarro et al. 1997])

O-point
Transonic point

X

M

1

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0

0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0
Transonic Outflow with Dark Matter Halo and Super-Massive Black Hole (Igarashi et al. 2014)

Basic equations

\[4\pi \rho v r^2 = \text{const.} \]

\[\frac{v}{dr} = -\frac{c_s^2}{\rho} \frac{d\rho}{dr} - \frac{d\Phi(r)}{dr} \]

\[dM^2 = \left(\frac{4}{x} - \frac{2}{c_s^2} \frac{d\Phi}{dx} \right) dx \]

\[\frac{1}{2c_s^2} \Phi(x) = -K_{DMH} \frac{\log(x + 1)}{x} - \frac{K_{BH}}{x} \]

\[K_{DMH} = \frac{2\pi G \rho_d r_d^2}{c_s^2} \approx \frac{\text{DMH gravitational energy}}{\text{thermal energy}} \]

\[K_{BH} = \frac{GM_{BH}}{2r_d c_s^2} \approx \frac{\text{SMBH gravitational energy}}{\text{thermal energy}} \]

Dark matter halo mass distribution

\[\rho_{DMH} = \frac{\rho_d r_d^3}{r(r + r_d)^2} \]

Super-massive black hole mass

\[+ M_{BH} \]

Two transonic solutions!
Variety of Solutions for Isothermal model

Next, we apply our model to the Sombrero galaxy.
Paradox in the Sombrero galaxy

Chandra X-ray observatory observed wide-spread hot gas as the trace of outflow.
(Li et al. 2011)

Hydrostatic-like gas density distribution

inactive star-formation (~0.06M$_\odot$/yr)
(Li et al. 2007, Kennicutt 1998)

Galactic outflow : to be or not to be ? That is the question!
Application to the Sombrero galaxy

- We fitted transonic solutions to gas density data (<25kpc), using observed temperature and mass distribution. (Li et al. 2011, Bridges et al. 2007, Kormendy et al. 1996).

"Transonic solution" and "hydrostatic-like feature" can coexist!

Outer transonic solution well reproduces observed gas distribution.

Difference of gas density appears between outflow model and hydrostatic one.
Discussion: Polytropic Model

polytropic, steady and spherically symmetric model

Basic equations

Mass conservation

\[4\pi \rho \, v \, r^2 = \text{const.} \]

Momentum conservation

\[\frac{d}{dr} \left(\rho \, \frac{dv}{dr} \right) = -\frac{1}{\rho} \frac{dP}{dr} - \frac{d\Phi(r)}{dr} \]

Energy conservation

\[\frac{v^2}{2} + \frac{c_s^2}{\gamma - 1} + \Phi(r) = E \]

Polytropic relation

\[P \propto \rho^\gamma \]

\[\frac{M^2 - 1}{M^2 \{(\gamma - 1)M^2 + 2\} \, dr} \frac{dM^2}{dr} = \frac{2}{r} - \frac{\gamma + 1}{2(\gamma - 1)} \frac{1}{E - \Phi} \frac{d\Phi}{dr} \]

\[\frac{1}{2E} \Phi(x) = -K_{DMH} \frac{\log(x + 1)}{x} - K_{BH} \frac{1}{x} \]

\[K_{DMH} = \frac{2\pi G \rho_d r_d^2}{E} \approx \frac{DMH \text{ gravitational energy}}{\text{total energy}} \]

\[K_{BH} = \frac{GM_{BH}}{2r_d E} \approx \frac{SMBH \text{ gravitational energy}}{\text{total energy}} \]

Dark matter halo mass distribution

Super-massive black hole mass

\[\rho_{DMH} = \frac{\rho_d r_d^3}{r(r + r_d)^2} + M_{BH} \]

Transonic galactic outflow can exist also in polytropic model?
Discussion: Variety of Solutions for Polytropic Model

\[\gamma = 1.1 \]

\[\log_{10} K_{DMH} \]

(SMBH gravitational energy / total energy)

(Sombrero galaxy)

(isothermal model)

DM Halo gravitational energy / total energy
Discussion: Transonic Outflow in Sombrero galaxy

We fitted polytropic transonic solutions to gas density data (<25 kpc), using observed mass distribution.

Outer transonic solution well reproduces observed gas distribution.

Polytropic model (approximating cooling/heating process) improves density profile.
Summary and Discussion

• We investigated the galactic outflows in a cold dark matter halo with a super-massive black hole.

• We topologically categorized the variety of transonic solutions. There are 2-types of transonic solutions passing inner transonic point or outer one.

• In the Sombrero galaxy, our model successfully reproduced observed hydrostatic–like gas density profile by the outer transonic solution. Even for the quiescent galaxies (inactive star-forming galaxies), the transonic outflows can exist.

• Polytropic model can improve density profile.
Temperature Distribution in Sombrero galaxy

Outer transonic solution well reproduces observed gas distribution with small polytropic index γ.

Additional cooling (and heating) is required!
Polytropic model indicates low velocity in wide region.
Polytropic model indicates low Mach number.
Variation of Mass Flux

Isothermal model (0.5keV)

\[\dot{M} = 1.84 M_{\text{solar}} / \text{yr} \]

Polytropic model

\[\gamma = 1.1: \dot{M} = 1.41 M_{\text{solar}} / \text{yr}, \sqrt{E} = 270 \text{km/s} \]

\[\gamma = 1.2: \dot{M} = 0.15 M_{\text{solar}} / \text{yr}, \sqrt{E} = 43.7 \text{km/s} \]

Mass supply by Sne II and stellar winds
(Bajaja et al. 1984, 1991; Athey et al. 2002; Knapp et al. 1992; Mannucci et al. 2005; Cappellaro et al. 1999)

\[\dot{M} = 0.3 - 0.5 M_{\text{solar}} / \text{yr} \]

If steady outflow, mass flux indicated by polytropic model is close to observed mass supply.
Entropy-Maximum Solution

Polytropic model

\[M^{-1} \left\{ \frac{(\gamma - 1)M^2 + 2}{2(\gamma - 1)} \right\}^{\frac{\gamma + 1}{2(\gamma - 1)}} \]

\[= (\gamma K)^{-\frac{1}{\gamma - 1}} M^{-1} \frac{1}{r^2} \left(E - \Phi \right)^{\frac{\gamma + 1}{2(\gamma - 1)}} (\gamma > 1) \]

\(K \): magnitude of entropy

\(\dot{M}, E = \text{const.} \)

Example: winds in DM halo

Entropy is maximum at transonic point.

This property is independent on the form of gravitational potential.
Polytropic transonic outflow in the Sombrero

Outer transonic solution well reproduces observed gas distribution with small polytropic index γ.

Cooling (and heat transfer) changes gas state to isothermal-like in gas-rich region?
Dark Matter Density Distribution

Cosmological N-body simulations drives double power-law mass distribution.

DM Halo profile

\[\rho \propto \frac{1}{r^\alpha (r + r_d)^{3-\alpha}} \]

\(\alpha \) : concentration parameter

\(\alpha = 0.0 \) : weak concentration
observed in globular clusters (Burkert 1995)

\(\alpha = 1.0 \) : moderate concentration
driven by cosmological N-body simulation (Navarro et al. 1997)

\(\alpha = 1.5 \) : strong concentration like point mass gravity
driven by cosmological N-body simulation (Moore et al. 1999)
Transonic Solutions with DM Halo
(Tsuchiya et al. 2013)

Concentration of DM Halo

Large α represents point-mass-like gravity.

$$K_{DMH} = \frac{2\pi G \rho_d r_d^2}{c_s^2}$$

Sombrero galaxy

Concentration of DM Halo
Dependence of α with the Super-Massive Black Hole

$\alpha=0.0$ $\alpha=1.5$

Large α conducts the large concentration of dark matter halo mass.
\Rightarrow strengthen gravity of dark matter halo
K_{DMH} and K_{BH} in Actual Galaxies

- Assuming virial temperature

\[c_s^2 \approx \eta \frac{GM_{\text{DMH}}}{r_{\text{vir}}} \]

\(\eta \) : factor of correction

\[K_{\text{DMH}} = \frac{2\pi G\rho_d r_d^2}{c_s^2} = \frac{c}{2\eta} \int_0^c x^{2-\alpha} (x+1)^{\alpha-3} \, dx \]

\[K_{\text{BH}} = \frac{GM_{\text{BH}}}{2r_d c_s^2} = \frac{c}{2\eta} \frac{M_{\text{BH}}}{M_{\text{DMH}}} \]

- We used some relations between c, M_{DMH} and M_{BH}

\[c = \frac{r_{\text{vir}}}{r_d} = a \times \left(\frac{M_{\text{DMH}}}{10^{12} M_\odot} \right)^b \]

\begin{align*}
\frac{M_{\text{BH}}}{10^8 M_\odot} & = \mu \times \left(\frac{M_{\text{DMH}}}{10^{12} M_\odot} \right)^\nu \\
\end{align*}

\begin{align*}
a=12.8, \ b=-0.13 \text{ (Bullock et al. 2001)} & \quad \mu=0.10, \ \nu=1.65 \text{ (Baes et al. 2003)} \\
a=9.35, \ b=-0.094 \text{ (Maccio et al. 2008)} & \quad \mu=0.11, \ \nu=1.27 \text{ (Ferrarese 2002)} \\
a=9.7, \ b=-0.074 \text{ (Prada et al. 2012)} & \end{align*}
Differences of Transonic Solutions

Velocities in the far region: 500~1000 km/s

Many galaxies have metallicity (heavy elements) gradients.

Two transonic solutions have different starting points and mass fluxes.

different effects to the amount of gas and the release of heavy elements from galaxies
Deduction of mass distribution from galactic outflow velocity

Future mission (e.g. Astro-H) may reveal outflow velocity structure.

Our model deduces mass distribution in a galaxy.

The outer transonic solution represents mass distribution of dark matter halo.

The inner transonic solution represents mass of super-massive black hole.

Future mission (e.g. Astro-H) may reveal outflow velocity structure.

Our model deduces mass distribution in a galaxy.
Temperature Dependence of Transonic Solutions

Gas density profile in subsonic region is hydrostatic-like in observed range of temperature (0.6±0.3keV).
Temperature of the Sombrero galaxy

![Graph showing the temperature of the Sombrero galaxy versus radius (kpc)](image-url)

- **Temperature (keV)**
- **Radius (kpc)**

Notes:
- Average virial
- "sombrero-temperature.data"
Assumptions

• isothermal assumption

previous studies: supernovae by young and massive stars
Our model: hot interstellar medium at virial temperature

The inner transonic solution is accelerated by pressure gradient made from super-massive black hole.
Assumptions

- without mass injection

Mass injection: mass supply to galactic outflow

effect of momentum reduction

Because outer transonic solution starts in far distance, it does not be affected by mass injection.

We study the influence of mass injection in future work.
X-ray intensity in the Sombrero galaxy

Assuming only Bremsstrahlung for X-ray intensity

Observed region by Chandra (Li et al. 2011)

0.4-1keV

1-2keV

the difference between “outflow” and “hydrostatic”
Pattern A solutions

\[dM^2 \frac{dx}{dx} = \frac{4}{x} N(x; \alpha, K, K_{BH}) \left(1 - \frac{1}{M^2}\right) \]

\[N(x; \alpha, K, K_{BH}) = 1 - Kx^{2-\alpha} \frac{F_1[3 - \alpha, 3 - \alpha, 4 - \alpha; x]}{3 - \alpha} - \frac{K_{BH}}{x} \]

\[\alpha = 1 : NFW \text{ model} \]

red: X-point by Black hole gravity
blue: X-point by dark matter halo gravity
緑: X-point by both gravity

![Graph showing solutions and labeled points](image)