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Outline

• “standard” magnetic acceleration (related to collimation)

• rarefaction acceleration

• models – application to GRBs – discussion for AGNs
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Magnetized outflows
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• Extracted energy per time Ė

mainly in the form of Poynting flux

(magnetic fields tap the rotational energy

of the compact object or disk)

Ė =
c

4π
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rlc
Bp

︸ ︷︷ ︸
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Bφ × ( area ) ≈
c
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B2r2

• Ejected mass per time Ṁ

• The µ ≡ Ė/Ṁc2 gives the maximum

possible bulk Lorentz factor of the flow

• Magnetohydrodynamics:

matter (velocity, density, pressure)

+ large scale electromagnetic field
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“Standard” model for magnetic acceleration

☞ component of the momentum equation

δ S

δ

z

r

γρ0(V · ∇) (γwV ) = −∇p+ J0
E+J ×B

along the flow (wind equation): γ ≈ µ−F

where F ∝ r2nγVp = r2× mass flux

since mass flux ×δS = const,

F ∝ r2/δS ∝ r/δℓ⊥

acceleration requires the separation between streamlines to

increase faster than the cylindrical radius

the collimation-acceleration paradigm:

F ↓ through stronger collimation of the inner streamlines

relative to the outer ones (differential collimation)
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☞ transfield component of the momentum equation
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∇⊥r, with ∇⊥ ∼ 1

r, rlc =
c
Ω,

simplifies to
γ2r

R︸︷︷︸
inertia

≈ 1︸︷︷︸
EM

− γ2r
2
lc

r2︸ ︷︷ ︸
centrifugal

• if centrifugal negligible then γ ≈ z/r (since R−1 ≈ −d2r
dz2

≈ r
z2

)

power-law acceleration regime

(for parabolic shapes z ∝ ra, γ is a power of r)

• if inetria negligible then γ ≈ r/rlc linear acceleration regime

• if electromagnetic negligible then ballistic regime
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Simulations of relativistic jets
Komissarov, Barkov, Vlahakis, & Königl (2007)

Left panel shows density (colour) and magnetic field lines.

Right panel shows the Lorentz factor (colour) and the current

lines.
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γσ (solid line), µ (dashed line) and γ (dash-dotted line) along a

magnetic field line as a function of cylindrical radius

Accretion and Outflows throughout the scales 2 October 2014, Lyon



D
r

Komissarov, Vlahakis, Königl, & Barkov 2009
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Caveat: γϑ ∼ 1 (for high γ)

1/γ
θ

1/γ∼θ

ω<θ

During the afterglow γ decreases

When 1/γ > ϑ the observed flux decreases faster with time
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• with γϑ ∼ 1 very narrow jets (ϑ < 1◦ for γ > 100) −→ early

breaks or no breaks at all

• this is a result of causality (across jet): outer lines need to

know that there is space to expand

• equivalent to R ≈ γ2r (transfield force balance)

• Mach cone half-opening θm should be > ϑ

With sin θm =
γfcf
γVp

≈
σ1/2

γ
the requirement for causality yields

γϑ < σ1/2.

For efficient acceleration (σ ∼ 1 or smaller) we always get

γϑ ∼ 1
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Rarefaction acceleration
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Rarefaction acceleration

e
n
v
ir

o
n
m

e
n
t

Accretion and Outflows throughout the scales 2 October 2014, Lyon



D
r

Rarefaction acceleration

en
vi

ro
nm

en
t

j*

R
*

/γR

Accretion and Outflows throughout the scales 2 October 2014, Lyon



D
r

Rarefaction simple waves

At t = 0 two uniform states are in contact:

x

left state right state

x=
0

This Riemann problem allows self-similar solutions that depend

only on ξ = x/t.

• when ρR/ρL = 0 simple rarefaction wave
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At t > 0:

B

x

ta
il

he
ad

magnetized plasma

O

z

V

Vfast
vacuum

for the cold case the Riemann invariants imply

vx =
1

γj
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1/2
j

1 + σj

[

1 −

(

ρ

ρj

)1/2
]
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, ∆ϑ = Vtail < 1/γi
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The colour image in the Minkowski diagrams represents the distribution of the

Lorentz factor and the contours show the worldlines of various fluid parcels.

(see also Aloy & Rezzolla 2006 for HD, Mizuno+2008 for MHD)
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Simulation results

Komissarov, Vlahakis & Königl 2010

(see also Tchekhovskoy, Narayan & McKinney 2010)
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Steady-state rarefaction wave

Sapountzis & Vlahakis (2013)

• “flow around a corner”

• planar geometry

• ignoring Bp (nonzero By)

• similarity variable x/z (angle θ)

• generalization of the nonrelativistic, hydrodynamic rarefaction

(e.g. Landau & Lifshitz)
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time-dependent (left) and steady-state (right) rarefaction

(similar; ct → z)

(distance unit = R⋆/γj ∼ 1010 cm)
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Axisymmetric model
Solve steady-state axisymmetric MHD eqs using the method of characteristics

(Sapountzis & Vlahakis in preparation)
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γj = 100, σj = 1, ρext = 0
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Reflection of the wave from the axis
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Reflection causes sudden deceleration – standing shock (?)
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Does it work in AGNs?
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The role of the environment

• for nonzero ρext Riemann problem: rarefaction on the left state

/ contact discontinuity / shock on the right
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• matching of speed and total pressure at the contact

discontinuity gives the solution on the left and right
(Marti+1994, Lyutikov 2010 for time-dependent problem;

Katsoulakos & Vlahakis in preparation for the steady-state)

• time-dependent example: impulsive acceleration
(Granot, Komissarov & Spitkovsky 2011)
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for ρR/ρL = 0 for ρR/ρL = 10−7, PR = 0
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• in AGNs ρext/ρj ≫ 1, so rarefaction unlikely to work

• not clear, see Millas’ talk
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Summary

⋆ The collimation-acceleration paradigm provides a viable

explanation of the dynamics of relativistic jets

⋆ bulk acceleration up to Lorentz factors γ∞ & 0.5
E

Mc2
caveat: in ultrarelativistic GRB jets ϑ ∼ 1/γ

⋆ Rarefaction acceleration

• further increases γ

• makes GRB jets with γϑ ≫ 1

• steady shock creation (?)

• unlikely to work in AGN jets

⋆ The jet-environment interaction is complicated but important to

clarify
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