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Outline

Scientific background:

— Morphology of extragalactic jets;
— 3D numerical simulations of current-carrying relativistic jets;

Fluid instabilities in non-rotating jets

Linear stability analysis of cold relativistic MHD jets

Nonlinear evolution: numerical simulations

Conclusions



Astrophysical Background

Observations of AGN jet show change in
propagation direction (see Kovalev talk) and
morphology;

Bending and deflection can be induced by
different physical mechanisms = instabilities
/ interaction with the ambient;

Jet curvature may enhance energy and
momentum dissipation leading to substantial
deceleration;

Understanding the basic physical mechanisms
crucial to address many unanswered
questions.



AGN Jets: FRI / FRII Dicothomy

* FRI/: Low power sources * FR Il: High power sources,
dominated by jet emission, one-sided jet dominated by
two-sided jets, typically lobe emission, found isolated
found in rich clusters. or in poor groups.
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Quasar 3C175 \)

YLA Gem image (c) NRAD 1996




AGN Jets: 3D Simulations

* Relativistic MHD (RMHD) 3D simulations of AGN jets?:

y = 10, toroidal magnetic field (B);

Mignone et al, MNRAS (2010) 402, 7



Jet from the Crab Nebula

* Jet from the interaction between pulsar wind and
collimating action of azimuthal B (hoop stress) 2.

* Inthe SE jet material flows with v/c~0.4 slowing
down to ~0.02 into the nebula;

* SE jet morphology is “S” shaped and show
remarkable time variability:

IKomissarov & Lyubarski 2003,2004; *Del Zanna et al. 2004



Crab Jet: 3D Simulations

* Relativistic MHD (RMHD) jets from the Crab Nebula'

vy=2,p=0.6 v=4,B~1.2

Case A2, t=0.00 (yrs) Case B2, 1=0.00 (yrs)

Volume

Var: current
B 4.00e+00

—3.01e+00
L 2.02e+00
1.03e+00
4.00e-02

Max: @.87e-01
Min: 0.00e+00

IMignone et al, MNRAS (2013) 436, 1102



General features of 3D models
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* 3D models very different from 2D axisymmetric models;
* The presence of a toroidal field de-stabilizes the structure:

— non-axisymmetric deformation

— time-dependent deflections;
Deflection time scale (crab) ~ 5-10 years (compatible with

observations)



Which instabilities
are (precisely)
at work ?

Case A2, 1=130.09 (yrs)

Contour
Var: sigma

Max: 2.07e+01
Min: 0.00e+00

Contour
var: prs

5.84e-03
2.89e-03
141603
6.76e-04
—3.07e-04
—1.23e-04

Max: 6.15e-03
Min: 2.17e-08

Case B2, 1=47.60 (yrs)

Contour
Var: sigma

Mox: 357e+01
Min: 0.00e+00

Contour
Var: prs

1.07e-01
5.34e-02
267602
1.34e-02
—5.34e-03
—267e03

Max: 1.34e-01
Min: 1.00e-09
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Let’s take one step back...

www.videomach.com



Instabilities in non-rotating jets

* Non-rotating jets may be prone to three types of instabilities,

Kelvin-Helmholtz (KHI):

driven by relative velocity
shear = mixing, mom &
energy transfer, entrainment .

Tracer KH' t= 0'0020

1.0
-0.75
.— 0.50
[ 0.25
0.00
Max: 1.0
Min: 0.00

Current-Driven (CDI) :

driven by | | component
of current, small pitch
- helical deformation.

Pressure-Driven (PDI):

driven by the L component
of current = interchange
modes (like RT)

o JxB=0, t = 0,00
20

1.0
-0.75
! 0.50
0.25
.- 0.00

Max: 1.0
Min: 0.00

Tracer
1.0
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Principles of Instabilites

KHI: perturbation induces large pressure in concavities
so the amplitude of the oscillation grows up

- rolling up of the interface

CDI: perturbation brings field lines closer on the concave
side and further apart on the convex side. The larger magnetic B¢
pressure will bend the deformation even more leading to an

instability. Driven when J || B.

K=Be VB/B2

PDI: unfavourable field curvature relative to the pressure &/
gradient (k-B > 0): pressure force pushes the plasma

K VP>0

outwards from the inside of the field line curvature.

Driven when J 1 B.

Fundamental features of instability can be highlighted using linearized form
MHD / RMHD equations, in the limit of small perturbations.



Stability of RMHD Jets: Linear Analysis

§
~(yp)+V - (ypr)=0,

ot
e We consider cold relativistic ’ o
MHD (RMHD) flows! (p = 0): }fpa{varrp(v-?}irvlzj x B+ P
OB OFE
B e ; — L=V _4n] .
= VxEy = x B —4nJ

* Incylindrical coordinates (r, o, z) _
= B + Q
assume radial equilibrium such = { V=k(B +SHrre,
thatr, 6/0¢p = 6/0z =0;
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* The only nontrivial Eq.: ( - —

* For cold (p=0), non-rotating jet
— Force free conditions

== (V-E)JE+JxB=0

Bodo et al, MNRAS (2013) 434, 303



Equilibrium I\/Iodel

Equilibrium profiles

e Ye — 1
=1+ <"
v=(r) cosh(r/ry)®
H? = B2 — Q22 B2

H_
B:=R? — “‘/_erf ( )
7

9 z Ic {’a)h_}_

We adopt constant density so that the model depends on 3 parameters:

rB.

— On-axis magnetic pitch:

— Lorentz factor:

— Magnetization:
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Linear Stability: Equations

Linearization proceeds by normal mode analysis.
Writing flow quantities as Q = Q, + Q; where |Q,| << |Q,| one obtains

/‘
... [lots of algebra] ...

0
£0Y0 (a + vg - V) (Y1v0 + Yov1) + po(y1v0 + Yovi) - V(v0)

OF
T p17000 - V(vovy) = (V x By) x B, +(V x B,) x By + By x a—;+EI(v-EO)+EO(V-E,).

... [lots of algebra] ...

-

.

Expressing Q;oc exp(iot —ime — ikz) and =~ 12 pages of math later:

d&,, C, — DK/ D
D il = C, + - B _ — g, -G,
dr kg r
dIl oY Vg C,—Dky C | ¢
D?1 = |AD - ? b (C] + —= B P i + T4 ‘+‘Cﬁ) &r + [_ (!OO}/OZFSIPCB - 2D+ = +C?)] I
: ' » , p r




ODE: Boundary Value Problem

* System of 2 ODEs in complex variables &,, (displ.) and I, =B,-B; —E,-E;:

f
d_f],- Cg — D"‘;B D
D =\ Ci+—i—— — — | &1, — G314
dr kg r
) dIl 2 C,— Dk, C
PoYq v » — Dk . 1 ) C
D—" = 4D -0+ 2 2o |6 + |- (porded, G —2D+ =24 G || I
dr r kg r r v r
-

 We solve the system for O <r <o with boundary conditions:

— r=0: series expansion (ODE singular at r = 0)

— 1 — o0: Asymptotic solutions have to decay and no incoming wave is
allowed (Sommerfeld condition).

* For finding the eigenvalue ®» we use a shooting method with a complex secant
root finder: forward and backward solutions are matched an intermediate
radius?.

Bodo et al, MNRAS (2013) 434, 303



Results: static case (y. = 1)

] ' I
A - |— const. pitch —
Only CD mode present. 01000 £ [~ const pich ;
L |—— P.=333a :
| |[— P.=833a ]
— P, = 16664

Resonant condition critical S 00190 /

for determining instability: . - 3

0.0010 ¢
m -m=+1
k-B=kB,+ —By=kP+m=20 I

0.0001
1.0

kP,

0.1
(no magnetic tension on resonant surfaces)

since P=P(r) <0 this is verified only for m =+1 - “Kink” mode

Instability present for all wavenumbers k < 1/P;

In the limit P/a>> 1, we verify the m(e) ~ A (i)z &P
asymptotic scaling P. \ P,



y.=1.01, P, = 105

For large Pitch, B = B,

(longitudinal field)

only KH mode is present  »

=

for m= %1 (coincident)

CD mode is absent (stable);

Jet stability limit for M v. ~ 2 which gives the limit v <2v,

Remind that

y.=101 P_=10°

100 ¢

KHL

10 |-

b.07

M, =

Vele

Bl/ /P
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1 0©.008

0.006
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v.=1.01,P_=10

Ye=1.01 P,=10 m=1

Both KHI and CDI are present; '

=
IG=H
A s

10.00 |

KHI present for m= %1

Increasing M v, shifts the = g

maximum to smaller k, o ., ~
UMV,
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CDIl absent form =-1

Ye=1.01 P.,=10 m=-1
(resonant condition cannot be satisfied) ‘

Ocp << O gy

CDlI stability limit for kP, = 1 :
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O‘Ob 1L 1 ool L 1 Lol




y.=1.01,P_ =1

Yc=1-01 Pc=1 m=1

100.00 g -
The CDI (m=+1) moves towards :
higher k, 10.00 k - 0.10 |
0.08 |-
2 ; 100 1 oosh
O, Scalesas ~ 1P 1
(as in the static case) 108 f ok
m=+1 |
ey . 00 000 0% T
(DCD >> O KH Ye=1.01 P,=1 m=-1
100.00 7 - — ””E 0.010-
. ‘ 0.008 |
KHI presents only slight 1000
differences with the casesat | | ] ol
s 1.00 & S i
larger P.. = 1 boos [
0.10 | -
3 1 1 o002}
m=-1 ;
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Mode Transition

Increasing jet velocity leads, ...
to mode overlapping, 030}

merging and then splitting
in more branches?.

At vz=4 we have a mode .o
with larger wand a 2nd ..}

smaller mode.

Both have mixed CD/KH
properties.

KHI and CDI are expected -

to play a role although it £t

may not be possible to .
unequivocally isolate their
contributions.

0.251

m=1, v,,=4

T 0.35T

10.00

Mixed €D/KH:f

0.05F

1Anjiri et al, MNRAS(2014) 442, 2228

10.00



Relativistic Flow (yC - 10) KH mode

100.00 R
|

HI

10.00"‘""'1\"" —
;: 1.00?

0.103—

P. =10% m=-1
T X T 'k'””f.lno e Mo T 'k““T.lOO T 000 Yot T 0w 'k'””f.oo T 1000
0-08 T T T T T T T T T | T T T

 Stability boundary of KHI and o,,,,, move at

larger values of M_v. with respect to 006
classical cases?!;

» For P, <1, KHI boundary moves towards %
smaller values of M_v, ~ 2 (stabilizing

longitudinal component weakens) 002

* Forincreasingy. the maximum o decreases

1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1
0'000 2 4 6 8

10smanov et al, A&A (2008) 490, 493



Relativistic Flow (y. = 10): CD mode

Ye=10 P.=01 m=1

v.=10 P.=1 m=1

100.00 ¢ 10000 ¢
i 3
'KHT : i
10.00 £ L 10.00 INSN Y 4=
- o 3 = I pe
] [ N\' / 1
S ] = 1.00:— -
<° 100 — = / : N
S : I ICD/ 1 ]
0.10 k _ 0.10 |‘ F
0.04 & P L LA LL e, Y T T 'k R 10.00

k
* CDI: mode splits in two branches: an inner mode concentrated inside
the jet and an outer mode outside the jet: condition kP(r) = 1 cannot be
fulfilled inside the shear (pitch steeper)
* The relative importance of the two branches depends both on the
current concentration (a) and Lorentz factor y..

* CDI: scaling of the inner mode w, ~ 1/(P2y.?)



Numerical Simulations: linear phase

* Numerical simulations confirm analytical predictions?!: linear growth correctly
reproduced but high resolution required (> 20 pt / jet radius)
- A10,1=15
IBI AQ, =24 .:? = is

B

Growth rate

: , Hi—Res E _a ]
AO, Lo—Res ----- ] 1077¢ A10, Hi—Res
i Ex@ct - 1 C A10, Lo—Res - ----
1075 IR RSN RSN ERRN S I R If Exact ——ooieeens
0O 50 100 150 200 250 300 0%
Time 0 20 40 60 80 100

;
LAnjiri et al, MNRAS(2014) 442, 2228 ==



Transition to nonlinear phase

e Static jet: the initial displacement * Super-Alfvénic jet (v/vA=10): linear
grows into a twisted helical growth accompanied by oblique
deformation; perturbations steepening into

shocks;

* Large wavelength non-
axisymmetric deformation as well

as small-scale surface modes;
Jet Density AO, t=0.00 ! W videomach.c

me Jet Density Al 0; t=0.00
-0.75 - 1.0

=o.5o -0.75

- 0.25 050

Mox-o'lo 0 ‘ 4. .— 0.25

Min: 0.0 : - l s

Max: 1.0
Min: 0.0




Nonlinear evolution

* Fast jet disrupted: presence of KHI gives rise to small-scale disturbance that
crumble and grow on top of helical deformations.

* Instability spreads and redistribute the initial jet material and momentum over
a larger surface area with consequent reduction of the jet average velocity and
hence favouring jet braking in few Alfvén time-scales .

Pressure
2.7
I 20
1.4
[ 0.68
0.010

Max: 7.6
Min: 1.0e-07

Pressure
0.80
l 0.60
0.41
Iazl
0.010

Max: 1.3
Min: 1.0e-07

A10,t=17

Al10,t=19




Energy Budget

Jet Energy (A10)

* Shocks provide efficient dissipation
mechanism of mechanical energy;

ot

g g

g '
T

* Jet becomes forcefully disrupted on a
rapid time scale;

* Jetloses up to = 80-90 % of its initial 05|
energy which becomes available to the |
ambient medium mostly in the form of 4 °°
heat and, secondly, kinetic energy.

mb/ Ejet( O)

X

-0.5




Pressure-Balanced Jets (not force-free)

==w=m * Purely toroidal field,

t=0.00 (yrs) pressure-balanced jet:
& d
i L—JB, JLB

Max: 0.98
Min: 0.00

No helical displacement

Deflection caused by
growth of m=+1KH
and PD modes.

—

x No CDI !!



Summary

Instabilities in jets responsible for morphology, mom. and energy dissipation;

Analytical study essential for the interpretation of numerical results: non-
rotating, force-free, cold jets may be prone to KH| and CDI:

— KHI prevails in matter-dominated flows: k.., and o(k_.,) ~ /M V. Weak
dependence on the pitch. Stabilization at large y, merging at small Pitch.

— CDlI prevails in magnetically-dominated flows: k., ~ 1/P. and
o(k ., )~1/P2. High y steepen the pitch profile inducing mode stabilization
in regions where the return current is found = mode splitting. Mergin
with KH in super-Alfvenic flows.

Results confirmed by 3D numerical simulations.
Nonlinear evolution of CDI feature large helical displacements...

Combined action of KHI and CDI = efficient mechanism to transfer
momentum and energy to ambient during nonlinear stages.



THE END

Thank you
for

your attention



