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A glimpse of M87

Some values...

One of the AGNs closest to Earth (16.7 Mpc)

Mass: 3.2 to 6.6 ·109M⊙ → 1mas = 0.081pc = 140RS

Viewing angle of inner jet regions: 10o − 19o to the line of sight

HST-1: Luminous region at ∼ 0.9 arcsec from core
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Outline
Introduction
Simulations

Conclusions & Future work

A glimpse of M87

Core of the M87 jet with frequency (Hada et al. 2011)
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A glimpse of M87

Jet radius with deprojected distance from core (in Schwarzschild radii, Asada &
Nakamura, 2012)
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This distance corresponds to the Bondi radius
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A glimpse of M87

A possible explanation ?

The HST-1 complex is located at ≃ 5 · 105RS from the core

This distance corresponds to the Bondi radius

Is it possible that accreting material can cause the observed
change in the shape of the jet ?

Simulations of both the jet and the Bondi accretion
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Setting up the jet

Initial Lorentz factor: γ = 5

Maximum magnetization: σ = 4

Density: defined by σ = B2

γ2ρ

∣

∣

∣

θ=θ1

Thermal pressure: polytropic with Γ = 5/3, cs = 0.1
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Magnetic field with angle: bell-shaped Bφ(r, θ) = Bo
sinθ

1+

(

sinθ
sin0.1

)

2

1

r
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Modifying the integrals

Assuming axisymmetry and time independence, we may partially
integrate the ideal MHD equations:

Mass flux to magnetic field flux ratio:

ΨA = Ψ(A) =
4πγρoVp

Bp

Field angular velocity:

Ω = Ω(A) =
Vφ

̟
−

Vp

̟

Bφ

Bp

Total specific angular momentum:

L = L(A) = ξγ̟Vφ −
̟Bφ

ΨA

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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Total energy to mass flux ratio:

µ = µ(A) = ξγ −
̟ΩBφ

ΨAc2

Adiabat:

Q = Q(A) =
P

ρΓo

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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Assuming no poloidal component is used, the integrals may be
expressed as:

Specific angular momentum:

L = ξγrsin(θ)Vφ = ξγ̟Vφ

Angular velocity function:

Φ = −
Bφ

4πγρocrsin(θ)
= −

Bφ

4πγρoc̟

Total energy to mass flux ratio:

µ = ξγ +
B2

φ

4πγρoc2

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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Acceleration

Using the integrals:

Wind equation (velocity along a field line):

µ2

ξ2

G2

(

1−M2 − x2
A

)2

− x2
A

(

G2 −M2 − x2

)

G2

(

1−M2 − x2

) = 1 +
[σMM2̟~∇A

ξx2A

]2

x cylindrical radius (normalized to the light cylinder), xA its value on

Alfvén surface, G = x/xA, σM = AΩ2/ΨAc
3
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Transfield equation (shape of a field line):

[

x2
(

~∇A
)2 dln( xA

̟A
)

dA
− L̄A

(

1−M2 − x2
)]( ~∇A

̟

)

+
[ 2x2

A

̟3
AG

(

~∇A
)2

+
µ2x6

AA
2

̟5
Aσ

2
MM2G3

(G2 −M2 − x2

1−M2 − x2

)2]

ˆ̟ · ~∇A

−
M2

2
~∇
[( ~∇A

̟

)2]

· ~∇A−
Γ− 1

Γ
~∇
[ξ

(

ξ − 1
)

M2

A2x4
A

σ2
M̟4

A

]

· ~∇A

−
1

2̟2
~∇
[µ2A2x6

A

σ2
M̟2

A

( 1−G2

1−M2 − x2

)2]

· ~∇A = 0
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Steady state MHD equations after partial integration: wind &
transfield

Solutions depend on Alfvénic Mach number and magnetic flux
function

Wind equation solutions depend on the bunching function
S = ̟|∇A|/A = ̟2Bp/A

µ2G
2(1−M2 − x2

A)
2 − x2

A(G
2 −M2 − x2)

G2(1−M2 − x2)2
= 1+

(

σMM2̟∇A

x2A

)2
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Desirable form of S?

Using the integrals:

dγ

dx
= γ2σM (γ2 − 1)1/2

dS/dx

µ− γ3

For an accelerated flow:
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Desirable form of S?

Using the integrals:

dγ

dx
= γ2σM (γ2 − 1)1/2

dS/dx

µ− γ3

For an accelerated flow:

S must increase while γ < µ1/3
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Desirable form of S?

Using the integrals:

dγ

dx
= γ2σM (γ2 − 1)1/2

dS/dx

µ− γ3

For an accelerated flow:

S must increase while γ < µ1/3

S must decrease while γ > µ1/3

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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Important results

In each simulation we examine:
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Important results

In each simulation we examine:

Acceleration efficiency...

Bunching function...

N.Vlahakis & A. Königl 2003, C.Fendt & R.Ouyed 2004, D.
Millas et. al 2014, S. S. Komissarov et al. 2009
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Important results

In each simulation we examine:

Acceleration efficiency...

Bunching function...

N.Vlahakis & A. Königl 2003, C.Fendt & R.Ouyed 2004, D.
Millas et. al 2014, S. S. Komissarov et al. 2009

Solvability condition...

J. Heyvaerts & C. Norman 1989, T. Chiueh et. al 1991
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Important results

In each simulation we examine:

Acceleration efficiency...

Bunching function...

N.Vlahakis & A. Königl 2003, C.Fendt & R.Ouyed 2004, D.
Millas et. al 2014, S. S. Komissarov et al. 2009

Solvability condition...

J. Heyvaerts & C. Norman 1989, T. Chiueh et. al 1991

...and of course the shape of the jet

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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Jet - Bondi accretion
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Jet - Bondi accretion

Grid: r : 104 − 105, θ : 0.001− π/2
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Jet - Bondi accretion

Grid: r : 104 − 105, θ : 0.001− π/2

Boundary conditions:

r = 104: userdef

r = 105:

θ = 0.001: axisymmetric

θ = π/2: eqtsymmetric
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Jet - Bondi accretion

Grid: r : 104 − 105, θ : 0.001− π/2

Boundary conditions:

r = 104: userdef

r = 105:

θ = 0.001: axisymmetric

θ = π/2: eqtsymmetric

Equilibrium of jet magnetic pressure and env. thermal pressure
for r = 104, θ = π

6
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Jet - Bondi accretion

Grid: r : 104 − 105, θ : 0.001− π/2

Boundary conditions:

r = 104: userdef

r = 105:

θ = 0.001: axisymmetric

θ = π/2: eqtsymmetric

Equilibrium of jet magnetic pressure and env. thermal pressure
for r = 104, θ = π

6

Timescales: 1 sound crossing time = 1 My (for cenvs = 10−3)
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Jet - Bondi accretion

Grid: r : 104 − 105, θ : 0.001− π/2

Boundary conditions:

r = 104: userdef

r = 105: ?

θ = 0.001: axisymmetric

θ = π/2: eqtsymmetric

Equilibrium of jet magnetic pressure and env. thermal pressure
for r = 104, θ = π

6

Timescales: 1 sound crossing time = 1 My (for cenvs = 10−3)
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Jet - Bondi accretion

Grid: r : 104 − 105, θ : 0.001− π/2

Boundary conditions:

r = 104: userdef

r = 105: Bφ check

θ = 0.001: axisymmetric

θ = π/2: eqtsymmetric

Equilibrium of jet magnetic pressure and env. thermal pressure
for r = 104, θ = π

6

Timescales: 1 sound crossing time = 1 My (for cenvs = 10−3)

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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Proper speed at 0, 1, 10 and 20 sound crossing times

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014



Outline
Introduction
Simulations

Conclusions & Future work

Integrals
Acceleration
Jet & Bondi Accretion
Jet & Static Atmosphere
Rarefaction

Lorentz factor with θ in 0, 1, 10 and 20 sound crossing times (r ∼ 3 · 104)

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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L integral in 0, 1, 10 and 20 sound crossing times
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Φ integral in 0, 1, 10 and 20 sound crossing times
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µ integral in 0, 1, 10 and 20 sound crossing times
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Acceleration efficiency

Theoretical maximum of γ: γmax = γ(σ + 1) = 25

Result: γf = 15

Acceleration efficiency α ≃ 60%

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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Solvability (
̟Bφ

γ
)

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014



Outline
Introduction
Simulations

Conclusions & Future work

Integrals
Acceleration
Jet & Bondi Accretion
Jet & Static Atmosphere
Rarefaction

Simulation Results
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Simulation Results

No steady state after 20 crossing times
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Simulation Results

No steady state after 20 crossing times

Highly perturbed interaction region
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Simulation Results

No steady state after 20 crossing times

Highly perturbed interaction region

Quasi-periodic behaviour, τ ∼ 107 or τy ≃ 105 yrs
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Simulation Results

No steady state after 20 crossing times

Highly perturbed interaction region

Quasi-periodic behaviour, τ ∼ 107 or τy ≃ 105 yrs

Jet interior in agreement with other simulations & theory
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Simulation Results

No steady state after 20 crossing times

Highly perturbed interaction region

Quasi-periodic behaviour, τ ∼ 107 or τy ≃ 105 yrs

Jet interior in agreement with other simulations & theory

Probable rarefaction acceleration

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014



Outline
Introduction
Simulations

Conclusions & Future work

Integrals
Acceleration
Jet & Bondi Accretion
Jet & Static Atmosphere
Rarefaction

Problems

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014



Outline
Introduction
Simulations

Conclusions & Future work

Integrals
Acceleration
Jet & Bondi Accretion
Jet & Static Atmosphere
Rarefaction

Problems

The very existence of environment
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Problems

The very existence of environment

Contrast of densities ≃ 105
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The very existence of environment

Contrast of densities ≃ 105

Boundary conditions for r = 105
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Problems

The very existence of environment

Contrast of densities ≃ 105

Boundary conditions for r = 105

Magnetic field diffusion

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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Why use a static atmosphere?
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Why use a static atmosphere?

No accretion, less B-field diffusion
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Why use a static atmosphere?

No accretion, less B-field diffusion

Easy to analyse:
dP

dr
= −ρ

GM

r
→

ρ =
[

ρΓ−1

i +GM · Γ−1

qoΓ
·
(

1

r − 1

rin

)]
1

Γ−1

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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Why use a static atmosphere?

No accretion, less B-field diffusion

Easy to analyse:
dP

dr
= −ρ

GM

r
→

ρ =
[

ρΓ−1

i +GM · Γ−1

qoΓ
·
(

1

r − 1

rin

)]
1

Γ−1

No inequality for the upper boundary
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Why use a static atmosphere?

No accretion, less B-field diffusion

Easy to analyse:
dP

dr
= −ρ

GM

r
→

ρ =
[

ρΓ−1

i +GM · Γ−1

qoΓ
·
(

1

r − 1

rin

)]
1

Γ−1

No inequality for the upper boundary

Outflow conditions may be used for r = 105
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Why use a static atmosphere?

No accretion, less B-field dissipation

Easy to analyse:
dP

dr
= −ρ

GM

r
→

ρ =
[

ρΓ−1

i +GM · Γ−1

qoΓ
·
(

1

r − 1

rin

)]
1

Γ−1

No inequality for the upper boundary

Outflow conditions may be used for r = 105

But: No shock to provide the necessary pressure gradient

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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Proper speed 0, 1, 2.5 10 sound crossing times
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Lorentz factor to θ for 0, 1, 2.5 and 10 sound crossing times (3 · 104)

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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L integral at 0, 1, 2.5 and 10 sound crossing times
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Φ integral at 0, 1, 2.5 and 10 sound crossing times
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Acceleration efficiency

Theoretical maximum of γ: γmax = γ(σ + 1) = 25

Results: γ: γf = 14

Acceleration efficiency α ≃ 56%
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Simulation Results

Steady state after 10 crossing times

Much more comprehensive results concerning the shape - no
change in steady state!

Jet interior in agreement with other simulations & theory

Probable rarefaction acceleration even with different
environment!
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Examine environment with
ρenv =

ρj
10

Neglect gravity (GM=0)

Mantain the same
configuration for the jet
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Lorentz factor to θ in 0, 1, 5 and 8 light crossing times (r ≃ 3 · 104)
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Our Goal:

An accreting environment with a pressure gradient, which would
result in changing the shape of the jet

Our Results:

Jet - environment interaction clearly affects the shape of the jet

The Bondi accretion scenario is unclear (interacting region,
boundary conditions)

In both cases, the inner jet does not change

All other results (acceleration, shape) consistent with other
simulations and theoretical work

Both scenarios indicate a probable rarefaction acceleration in the
interacting region
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Future work

Use alternative initial conditons

Alternative way to control the boundary conditions at r = rmax

Reduce B-field diffusion

Better insight of the interacting region

Dimitrios Millas Jet - environment simulations Lyon, 03/10/2014
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